THREE-STATE ENERGY VOLTAGE REGULATION MODEL APPLIED TO SMART GRID, 1-11.

Jingmei Wu

References

  1. [1] Q. Yang, G. Wang, A. Sadeghi, G.B. Giannakis, J. Sun,Two-timescale voltage control in distribution grids using deepreinforcement learning, IEEE Transactions on Smart Grid,11(3), 2020, 2313–2323.
  2. [2] R. Cai, B. Xia, X. Zhu, L. Wang, J. Gu, J. Tang, Design ofa risk model and analytical decision information system forpower operation in the context of smart grid, 1-9., InternationalJournal of Power and Energy Systems, 44(10), 2024.
  3. [3] S.Y. Zhao, L.F. Zhao, Forecasting long-term electric powerdemand by linear semiparametric regression, Advances inIndustrial Engineering and Management, 11(1), 2022.
  4. [4] S. Saxena, H.E.Z. Farag, H. Turesson, H. Kim, Blockchainbased transactive energy systems for voltage regulation inactive distribution networks, IET Smart Grid, 3(5), 2020,646–656.
  5. [5] H. Bouderraoui, M. Chami, SGS: A modelling and simulationsmart grid environment, end user application, InternationalJournal of Power and Energy Systems, 41(3), 2021.
  6. [6] M. Vasundhara, Transmission system reliability evaluation byincorporating STATCOM in the system network, IEEE StudentConference on Research and Development (SCOReD). IEEE,2019.10
  7. [7] Y. Liu, C. Sun, A. Paudel, Y. Gao, Y. Li, H.B. Gooi, J. Zhu,Fully decentralized P2P energy trading in active distributionnetworks with voltage regulation, IEEE Transactions on SmartGrid, 14(2), 2023, 1466–1481.
  8. [8] S. Giacomuzzi, M. Langwasser, G. De Carne, G. Buja, M.Liserre, Smart transformer-based medium voltage grid supportby means of active power control, CES Transactions onElectrical Machines and Systems, 4(4), 2020, 285–294.
  9. [9] A.K. Yadav, S. Mudgal, V. Mahajan, Reliability test ofrestructured power system with capacity expansion andtransmission switching, 2019 8th International Conference onPower Systems (ICPS). IEEE, 2019.
  10. [10] V. Mahajan, A.K. Yadav, Transmission line switching spreadmodelling of synchrophasor smart grid network with loaduncertainty inspired by epidemic model: A study of reliabilityand vulnerability, Sustainable and Resilient Infrastructure,9(4), 2024, 309–327.
  11. [11] J. Paniagua, E. Unamuno, J.A. Barrena, Dual Inertia-Emulation Control for Interlinking Converters in Grid-TyingApplications, IEEE Transactions on Smart Grid, 12(5), 2021,3868–3876.
  12. [12] ˆA. Frimane, J. Munkhammar, D. van der Meer, Infinite hiddenMarkov model for short-term solar irradiance forecasting, SolarEnergy, 244, 2022, 331–342.
  13. [13] K. Abraham, E. Gassiat, Z. Naulet, Fundamental limits forlearning hidden Markov model parameters, IEEE Transactionson Information Theory, 69(3), 2023, 1777–1794.
  14. [14] F. Flandoli, E. La Fauci, M. Riva, Individual-based Markovmodel of virus diffusion: Comparison with COVID-19incubation period, serial interval and regional time series,Mathematical Models and Methods in Applied Sciences, 31(05),2021, 907–939.
  15. [15] Z. Wang, X. Wu, H. Wang, T. Wu, Prediction and analysisof domestic water consumption based on optimized grey andMarkov model, Water Supply, 21(7), 2021, 3887–3899.
  16. [16] G. Bandewad, K.P. Datta, B.W. Gawali, S.N. Pawar, Review ondiscrimination of hazardous gases by smart sensing technology,Artificial Intelligence and Applications, 1(2), 2023, 70–81.
  17. [17] Y. Zheng, Z. Shao, Z. Gao, M.M. Deng, X.S. Zhai, Optimizingthe online learners’ verbal intention classification efficiencybased on the multi-head attention mechanism algorithm,International Journal of Foundations of Computer Science,33(6/7), 2022, 717–733.
  18. [18] Y. Han, L. Feng, J. Gao, A new end-to-end framework based onnon-local network structure and spatial attention mechanismfor image rain removal, International Journal of Computersand Applications, 44(11), 2022, 1083–1091.
  19. [19] F. Paul, Y. Meng, B. Roux, Identification of druggablekinase target conformations using Markov model metastablestates analysis of apo-Abl, Journal of chemical theory andcomputation, 16(3), 2020, 1896–1912.
  20. [20] M. Huang, Y. Huang, W. Yao, Statistical inference for thenonparametric and semiparametric hidden Markov model viathe composite likelihood approach, Science China Mathematics,2022.
  21. [21] A. K. Yadav, V. Mahajan, Transmission line switching for lossreduction and reliability improvement. International conferenceon information and communications technology (ICOIACT).IEEE, 2019.

Important Links:

Go Back