A ROBUST CONTROL FOR INCREASING MAXIMUM POWER GENERATION EFFICIENCY OF A THERMOELECTRIC GENERATOR SYSTEM

Issam Bekki, Fatima Ez-zahra Lamzouri, Aumeur El Amrani, and El-Mahjoub Boufounas

References

  1. [1] R. Ahiska and H. Mamur, A test system and supervisory controland data acquisition application with programmable logiccontroller for thermoelectric generators, Energy Conversionand Management, 64, 2012, 15–22.
  2. [2] A.A. Kandil, M.M. Awad, G.I. Sultan, and M.S. Salem,Performance of a photovoltaic thermoelectric generator hybridsystem with a beam splitter under maximum permissibleoperating conditions, Energy Conversion and Management,280, 2023, 116795.
  3. [3] R. Kumar, F.J. Montero, R. Lamba, M. Vashishtha,and S. Upadhyaya, Thermal management of photovoltaic-thermoelectric generator hybrid system using radiative coolingand heat pipe, Applied Thermal Engineering, 227, 2023, 120420.
  4. [4] M. Gharzi, A.M. Kermani, and H.T. Shamsabadi, Experimentalinvestigation of a parabolic trough collector-thermoelectricgenerator (PTC-TEG) hybrid solar system with a pressurizedheat transfer fluid, Renewable Energy, 202, 2023, 270–279.
  5. [5] D. Yuan, W. Jiang, A. Sha, J. Xiao, W. Wu, and T.Wang, Technology method and functional characteristics ofroad thermoelectric generator system based on Seebeck effect,Applied Energy, 331, 2023, 120459.
  6. [6] C.A. Gould, N.Y.A. Shammas, and S. Grainger, Thermoelectricpower generation: Properties, application and novel TCADsimulation, in Proceeding of the IEEE European Conf on PowerElectronics and Applications, Birmingham, 2011, 1–10.
  7. [7] D. Champier, Thermoelectric generators: A review ofapplications, Energy Conversion and Management, 140, 2017,167–181.
  8. [8] S. Kim and P.H. Chou, Size and topology optimizationfor supercapacitor-based sub-watt energy harvesters, IEEETransactions on Power Electronics, 28, 2012, 2068–2080.
  9. [9] H. Mamur and R. Ahiska, Application of a DC–DC boostconverter with maximum power point tracking for lowpower thermoelectric generators, Energy Conversion andManagement, 97, 2015, 265–72.
  10. [10] N. Kanagaraj, An enhanced maximum power point trackingmethod for thermoelectric generator using adaptive neuro-fuzzy inference system, Journal of Electrical Engineering &Technology, 16, 2021, 1207–1218.
  11. [11] X. Liu , S. Yuan, Y. Zhou, B. Xu, W. Rong, Q. Li, X. Li,and P. Ma, Theoretical and experimental research on controlstrategy of maximum power point tracking for monolayerthermoelectric generator considering the degree of disturbance,Energy Reports, 8, 2022, 15124–15143.
  12. [12] M.H. Zafar, N.M. Khan, M. Mansoor, U.A. Khan, Towardsgreen energy for sustainable development: Machine learningbased MPPT approach for thermoelectric generator, Journalof Cleaner Production, 351, 2022, 131591.
  13. [13] M. Saraireh, A.M. Maqableh, M. Jaradat, and O. Saraereh,A novel method for thermoelectric generator based on neuralnetwork, Computers, Materials and Continua, 73, 2022,2116–2133.
  14. [14] N. Kanagaraj, H. Rezk, and M. Gomaa, A variable fractionalorder fuzzy logic control based MPPT technique for improvingenergy conversion efficiency of thermoelectric power generator,Energies, 13, 2020, 4531.
  15. [15] A. Belkaid, I. Colak, K. Kayisli, R. Bayindir, and H.I. Bulbul,Maximum power extraction from a photovoltaic panel anda thermoelectric generator constituting a hybrid electricalgeneration system, in Proceeding of the 6th IEEE InternationalConference on Smart Grid, Nagasaki, 2018, 276–282.
  16. [16] A. Belkaid, I. Colak, and K. Kayisli, Modeling and simulationof thermo electrical generator with MPPT, in Proceeding ofthe IEEE 6th International Conference on Renewable EnergyResearch and Applications (ICRERA), San Diego, CA, 2017,855–860.
  17. [17] S. Benhadouga, M. Meddad, A. Eddiai, D. Boukhetala, and K.Riad, Sliding mode control for MPPT of a thermogenerator,Journal of Electronic Materials, 48, 2019, 2103–2111.
  18. [18] S. Lineykin and S. Ben-Yaakov, Modeling and analysisof thermoelectric modules, IEEE Transactions on IndustryApplications, 43(2), 2007, 505–512.
  19. [19] M. ¨Ust¨uner, H. Mamur, and S. Taskin, Modeling and validationof the thermoelectric generator with considering the changeof the Seebeck effect and internal resistance, Turkish Journalof Electrical Engineering and Computer Sciences, 30, 2022.2688–2706.
  20. [20] M. Hayati and A. Rasit, Application of a DC–DC boostconverter with maximum power point tracking for lowpower thermoelectric generators, Energy Conversion andManagement, 97, 2015, 265–272.
  21. [21] A. Kamran, L. Khan, Q. Khan, S. Ullah, S. Ahmad, S. Mumtaz,F.W. Karam, and Naghmash, Robust integral backsteppingbased nonlinear MPPT control for a PV system, Energies, 12,2019, 3180.
  22. [22] H. Yamada, K. Kimura, T. Hanamoto, T. Ishiyama, T.Sakaguchi, and T. Takahashi, A novel MPPT control methodof thermoelectric power generation using state space averagingmethod, in Proceedings of the IEEE 9th International Confon Power Electronics and Drive Systems, Singapore, 2011,895–900.
  23. [23] J.J. Slotine, Sliding controller design for non-linear systems,International Journal of Control, 40, 1984, 421–434.
  24. [24] A. Frih, Z. Chalh, and M. Mrabti, Wind turbine: Bond graphmodelling and sliding mode control, Journal of MechatronicSystems and Control, 46, 2018, 8–14.
  25. [25] F.-E. Lamzouri, E.-M. Boufounas, and A. El Amrani,Backstepping integral sliding mode control for power captureoptimization of wind turbine system, Journal of MechatronicSystems and Control, 47(4), 2019, 225–234.
  26. [26] F.-E. Lamzouri, E.-M. Boufounas, and A. El Amrani, Nonlinearcontroller for MPPT based photovoltaic system under variableatmospheric conditions, International Journal of ModellingIdentification and Control, 35, 2021, 29–39.

Important Links:

Go Back