Anding Xu, Xunwei Wu, Huishen Zhu, and Jin Guo
[1] L. Zhang, Z. Liu, and X. Qin, Standards of measurement anddevelopmental challenges in path planning for manipulator,International Journal of Robotics and Automation, 38(3), 2023,208–217. [2] S. Liu, R. Langari, and Y. Li, Nonlinear direct joint control formanipulator handling a flexible payload with input constraints,International Journal of Robotics and Automation, 34(6), 2019,645–653. [3] N. Cobanoglu, B.M. Yilmaz, E. Tatlicioglu, and E. Zergeroglu,Repetitive control of robotic manipulators in operational space:A neural network-based approach, International Journal ofRobotics and Automation, 37(3), 2022, 302–309. [4] S. Zhao, Z. Zhu, C. Chen, Y. Du, X. Song, K. Yan, D. Jiang,L. Li, and A. Liu, Trajectory planning of redundant spacemanipulators for multi-tasks, International Journal of Roboticsand Automation, 38(5), 2023, 344–351. [5] K. Yassine, K. Maarouf, and B. Khalid, Super-twistingalgorithm with time delay estimation for uncertain robotmanipulators, Nonlinear Dynamics, 93(2), 2018, 557–569. [6] G. Reza and M.F. Mehdi, Robust, control of roboticmanipulators in the task-space using an adaptive observerbased on chebyshev polynomials, Journal of Systems Scienceand Complexity, 33(5), 2022, 1360–1382. [7] X. Yin and L. Pan, Direct adaptive robust tracking controlfor 6 DOF industrial robot with enhanced accuracy, ISATransactions, 72, 2018, 178–184. [8] F. Dong, X. Zhao, and J. Han, Optimal fuzzy adaptivecontrol for uncertain flexible joint manipulator based on D-operation, IET Control Theory and Applications, 12(9), 2018,1286–1298. [9] A. Ilchmann, E. Ryan, and S. Trenn, Tracking control:Performance funnels and prescribed transient behavior,Systems and Control Letters, 54(7), 2005, 655–670. [10] K. Tee, S. Ge, and E. Tay, Barrier Lyapunov functions for thecontrol of output-constrained nonlinear systems, Automatica,45(4), 2009, 918–927. [11] W. He, O.D. Amoateng, Y. Zhao, and C. Sun, Neural networkcontrol of a robotic manipulator with input a dead-zone andoutput constraint, IEEE Transactions on Systems, Man, andCybernetics: Systems, 46(6), 2015, 759–770. [12] W. He, H. Huang, and S.S. Ge, Adaptive neural network controlof a robotic manipulator with time-varying output constraints,IEEE Transactions on Cybernetics, 47(10), 2017, 3136–3147. [13] L. Ding, S. Li, and Y. Liu, Adaptive neural network-basedtracking control for full-state constrained wheeled mobilerobotic system, IEEE Transactions on Systems, Man, andCybernetics: Systems, 47(8), 2017, 2410–2419. [14] K. Tee, B. Ren, and S. Ge, Control of non-linear systems withtime-varying output constraints, Automatica, 47(11), 2011,2511–2516. [15] H. Li, Event-triggered bipartite consensus of multi-agentsystems in signed networks, AIMS Math, 7(4), 2022,5499–5526. [16] V.T. La, S. Huang, T.D. Tran, and D.H. Vu, Adaptive robustbackstepping sliding mode control of a deicing industrialrobot manipulator using neural network with dead zone,International Journal of Robotics and Automation, 36(3), 2021,181–188. [17] Ruchika and N. Kumar, Force/position control of constrainedreconfigurable manipulators with sliding mode control based onadaptive neural network, International Journal of Modelling,Identification and Control, 42(3), 2023, 259–269. [18] J. Zhou, Z. Li, G. Lv, and E. Liu, Fuzzy logic-based adaptivetracking control of manipulator actuated by DC motor,International Journal of Robotics and Automation, 36(3), 2021,196–203. [19] Q. Chen, K. Ding, and Y. Nan, Prescribed performance adaptivecontrol of flexible-joint manipulators with output constraints,Control and Decision, 36(2), 2012, 387–394. [20] J. Xu and X. Jin, State-constrained iterative learning controlfor a class of MIMO systems, IEEE Transactions on AutomaticControl, 58(5), 2013, 1322–1327. [21] W.G. Song, Robotics: Kinematics, dynamics and control, 1sted. (Beijing: Science Press, 2007). [22] S. Yi and J. Zhai, Adaptive second-order fast nonsingularterminal sliding mode control for robotic manipulators, ISATransactions, 90(5), 2019, 41–51.
Important Links:
Go Back