ADAPTIVE CONTROL STRATEGIES FOR QUADRUPED ROBOT ON UNPERCEIVED SLOPED TERRAIN

Huixiang Xie, Jianzhong Shang, and Mojtaba Ahmadi

References

  1. [1] R.B. McGhee, Finite state control of quadruped locomotion,Simulation, 9(3), 1967, 135–140.
  2. [2] R.B. McGhee, and A.A. Frank, On the stability properties ofquadruped creeping gaits, Mathematical Biosciences, 3, 1968,331–351.
  3. [3] S. Hirose, A study of design and control of a quadruped walkingvehicle, The International Journal of Robotics Research, 3(2),1984, 113–133.
  4. [4] H. Tsukagoshi, S. Hirose, and K. Yoneda, Maneuveringoperations of a quadruped walking robot on a slope, AdvancedRobotics, 11(4), 1997, 359–375.
  5. [5] X. Chen, K. Watanabe, K. Kiguchi, and K. Izumi, A real-timekinematics on the translational crawl motion of a quadrupedrobot, Journal of Intelligent and Robotic Systems, 29(2), 2000,111–131.
  6. [6] J. Estremera and P.G. de Santos, Generating continuous freecrab gaits for quadruped robots on irregular terrain, IEEETransactions on Robotics, 21(6), 2005, 1067–1076.
  7. [7] D. Pongas, M. Mistry, and S. Schaal, A robust quadrupedwalking gait for traversing rough terrain, 2007 IEEE Interna-tional Conference on Robotics and Automation, Roma, Italy,2007, 1474–1479.
  8. [8] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, et al.,Compliant quadruped locomotion over rough terrain, The 2009IEEE/RSJ International Conference on Intelligent Robots andSystems, St. Louis, MO, 2009, 814–820.
  9. [9] J. Pippine, D. Hackett, and A. Watson, An overview of thedefense advanced research projects agency’s learning locomo-tion program, The International Journal of Robotics Research,30(2), 2011, 141–144.
  10. [10] J.R. Rebula, P.D. Neuhaus, B.V. Bonnlander, M.J. Johnson,et al., A controller for the littledog quadruped walking onrough terrain, IEEE International Conference on Robotics andAutomation, Roma, Italy, 2007, 1467–1473.
  11. [11] J.Z. Kolter and A.Y. Ng, The Stanford LittleDog: A learn-ing and rapid replanning approach to quadruped locomotion,The International Journal of Robotics Research, 30(2), 2011,150–174.
  12. [12] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, et al.,Learning, planning, and control for quadruped locomotionover challenging terrain, The International Journal of RoboticsResearch, 30(2), 2011, 236–258.
  13. [13] M.H. Raibert, Legged robots that balance (Cambridge, MA,MIT Press, 1986).
  14. [14] M. Buehler, R. Playter, and M. Raibert, Robots step out-side, Int. Symp. Adaptive Motion of Animals and Machines(AMAM), Ilmenau, Germany, 2005, 1–4.
  15. [15] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter,Bigdog, the rough-terrain quadruped robot, Proc. 17th WorldCongress, The International Federation of Automatic Control,Seoul, Korea, 2008, 10823–10825.
  16. [16] J. Estremera and K.J. Waldron, Thrust control, stabilizationand energetics of a quadruped running robot, The InternationalJournal of Robotics Research, 27(10), 2008, 1135–1151.
  17. [17] I. Poulakakis, J.A. Smith, and M. Buehler, Modeling and ex-periments of untethered quadrupedal running with a boundinggait: The Scout II robot, The International Journal of RoboticsResearch, 24(4), 2005, 239–256.
  18. [18] I. Havoutis, C. Semini, J. Buchli, and D.G. Caldwell,Quadrupedal trotting with active compliance, 2013 IEEEInternational Conf. on Mechatronics (ICM), Vicenza, Italy,2013, 610–616.
  19. [19] Y. Fukuoka, H. Kimura, and A.H. Cohen, Adaptive dynamicwalking of a quadruped robot on irregular terrain based onbiological concepts, The International Journal of RoboticsResearch, 22(3–4), 2003, 187–202.
  20. [20] H. Kimura, Y. Fukuoka, and A.H. Cohen, Adaptive dynamicwalking of a quadruped robot on natural ground based onbiological concepts, The International Journal of RoboticsResearch, 26(5), 2007, 475–490.
  21. [21] A. Spr¨owitz, A. Tuleu, M. Vespignani, M. Ajallooeian, et al.,Towards dynamic trot gait locomotion: Design, control, andexperiments with Cheetah-cub, a compliant quadruped robot,The International Journal of Robotics Research, 32(8), 2013,933–951.
  22. [22] M. Ajallooeian, S. Pouya, A. Sproewitz, and A.J. Ijspeert,Central pattern generators augmented with virtual modelcontrol for quadruped rough terrain locomotion, 2013 IEEEInt. Conf. on Robotics and Automation (ICRA), Karlsruhe,Germany, 2013, 3321–3328.
  23. [23] J. Pratt, P. Dilworth, and G. Pratt, Virtual model controlof a bipedal walking robot, Proc. 1997 IEEE Int. Conf. onRobotics and Automation, Albuquerque, NM, 1997, 193–198.373
  24. [24] J. Pratt, Virtual model control: An intuitive approach forbipedal locomotion, The International Journal of RoboticsResearch, 20(2), 2001, 129–143.
  25. [25] C.-M. Chew and G. A. Pratt, Dynamic bipedal walking assistedby learning, Robotica, 20(05), 2002, 477–491.
  26. [26] J. Pratt, T. Koolen, T.d. Boer, J. Rebula, et al., Capturability-based analysis and control of legged locomotion, Part 2:Application to M2V2, a lower-body humanoid, The Interna-tional Journal of Robotics Research, 31(10), 2012, 1117–1133.
  27. [27] C.-M. Chew, J. Pratt, and G. Pratt, Blind walking of a planarbipedal robot on sloped terrain, Proc. IEEE Int. Conf. onRobotics and Automation, Detroit, MI, 1999, 381–386.
  28. [28] G.W. Hiebert, M.A. Gorassini, W. Jiang, A. Prochazka, et al.,Corrective responses to loss of ground support during walking.II. Comparison of intact and chronic spinal cats, Journal ofNeurophysiology, 71(2), 1994, 611–622.
  29. [29] S. Hirose, H. Tsukagoshi, and K. Yoneda, Normalized en-ergy stability margin and its contour of walking vehicles onrough terrain, Proc. 2001 IEEE Int. Conf. on Robotics andAutomation, Seoul, Korea, 2001, 181–186.
  30. [30] A. Konno, K. Ogasawara, Y. Hwang, E. Inohira, et al.,An adaptive gait for quadruped robots to walk on a slope,Intelligent Robots and Systems, 2003 (IROS 2003), Las Vegas,NV, 2003, 589–594.
  31. [31] C. Liu, Q. Chen, and G. Wang, Adaptive walking control ofquadruped robots based on central pattern generator (CPG)and reflex, Journal of Control Theory and Applications, 11(3),2013, 386–392.
  32. [32] M. Azad and R. Featherstone, Modeling the contact be-tween a rolling sphere and a compliant ground plane, Proc.Australasian Conf. on Robotics and Automation, 2010 (ACRA2010), Brisbane, Australia, 1–3 December, 2010.

Important Links:

Go Back