Shin-ya Nishizaki and Ritsuya Ikeda
[1] M. Abadi and L. Cardelli, A theory of primitive objects –untyped and first-order systems, in M. Hagiya and J.C. Mitchell,(eds.), Theoretical aspects of computer software, volume 789 ofLecture Notes in Computer Science, (Sendai, Japan: Springer-Verlag, 1994), 296–320. [2] M. Abadi and L. Cardelli, A theory of objects (New York,USA: Springer-Verlag, 1996). [3] G. Barthe and B.P. Serpette, Partial evaluation and non-interference for object calculi, in A. Middeldorp and T. Sato(eds.), Functional and logic programming: 4th Fuji interna-tional symposium, FLOPS’99, volume 1722 of Lecture Notes inComputer Science, (Tsukuba, Japan: Springer-Verlag, 1999),53–67. [4] M. Horie, M. Sakai, and T. Sakabe, Typing exceptions in anobject calculus, Computer Software, 20(2), 2003, 54–58. [5] W. Clinger and J. Rees, Revised report on the algorithmiclanguage scheme, ACM Lisp Pointers, 4(3), 1991, 1–55. [6] W. Clinger, R. Kelsey, and J. Rees, Revised report on thealgorithmic language scheme. SIGPLAN Notices, 33(9), 1998,26–76. [7] M. Felleisen, D.P. Friedman, E. Kohlbecker, and B.F. Duba,A syntactic theory of sequential control, Theoretical ComputerScience, 52(3), 1987, 205–237. [8] M. Felleisen and R. Hieb, The revised report on the syntactictheory of sequential control and state, Theoretical ComputerScience, 102, 1992, 235–271. [9] T.G. Griffin, A formulae-as-types notion of control, Conferencerecord of the seventeenth annual ACM Symposium on Principlesof Programming Languages, San Francisco, USA, 1990.9 [10] C. Murthy, An evaluation semantics for classical proofs, Proc.5th IEEE Anual Symposium on Logic in Computer Science,IEEE Computer Society Press, 1991. [11] M. Parigot, λμ-Calculus: An algorithmic interpretation ofclassical natural deduction, Proc. Int. Conf. Logic Prog. Au-thomated Reosoning, volume 624 of Lecture Notes in ComputerScience, Springer-Verlag, 1992, 190–201. [12] N. Guarino and C. Welty, An overview of ontoclean, in S.Staab and R. Studer (eds.), The handbook on ontologies,(Springer-Verlag, 2004), 151–172. [13] H. Nakano, A constructive formalization of the catch and throwmechanism, Proc. Symposium on Logic in Computer Science,IEEE Computer Society Press, 1992. [14] M. Sato, Intuitionistic and classical natural deduction systemswith the catch and the throw rules, Theoretical ComputerScience, 175(1), 1997, 75–92. [15] S. Nishizaki and R. Ikeda, Object calculus with first-classcontinuations, Proc. 13th Int. Conf. Software Engineering andApplications (SEA 2009), ACTA Press, 2009, 7–15.
Important Links:
Go Back