Modelling Earthquake Risk Based On Approximate Nonlinear Reliability Estimates

J.W. van de Lindt

References

  1. [1] C.A. Cornell, Engineering seismic risk analysis, Bulletin of theSeismological Society of America, 58, 1968, 1583–1606.
  2. [2] R.K. McGuire, Probabilistic seismic hazard analysis and designearthquakes: Closing the loop, Bulletin of the SeismologicalSociety of America, 85(5), 1995, 1275–1284.
  3. [3] P. Bazzurro & C.A. Cornell, On disaggregation of seismichazard, Bulletin of the Seismological Society of America, 89(2),1999, 501–520.
  4. [4] J.G. Anderson & J.N. Brune, Probabilistic seismic hazard analysis without the ergodic assumption, Seismological ResearchLetters, 70(1), 1999, 19–28.
  5. [5] C.A. Cornell & R.T. Sewell, Non-linear behavior intensitymeasures in seismic hazard analysis, Proc. Int. Workshop onSeismic Zonation, Guangzhou, China, 1987.
  6. [6] P. Bazzurro & C.A. Cornell, Seismic hazard analysis of non-linear structures—1: Methodology. 2: Applications, ASCEJournal of Structural Engineering, 120(11), 1994, 3320–3365. doi:10.1061/(ASCE)0733-9445(1994)120:11(3320)
  7. [7] N. Shome, C.A. Cornell, P. Bazzurro, & J.E. Carballo, Earthquakes, records and nonlinear responses, Earthquake Spectra,14 (3), 1997, 469–500. doi:10.1193/1.1586011
  8. [8] K.R. Collins, Y.K. Wen, & D.A. Foutch, Dual-level seismic design: A reliability-based methodology, Earthquake Engineeringand Structural Dynamics, 25, 1996, 1433–1467. doi:10.1002/(SICI)1096-9845(199612)25:12<1433::AID-EQE629>3.0.CO;2-M
  9. [9] M. Rahnama & H. Krawinkler, Amplification of seismic demands in linear and nonlinear soft soils, Proc. 5th U.S. Conf.in Earthquake Engineering, Vol. 2, Chicago, IL, 1994, 321–330.
  10. [10] G.D.P.K. Seneviratna & H. Krawinkler, Strength and displacement demands for seismic design of structural walls, Proc. 5thU.S. Conf. in Earthquake Engineering, Vol. 2, Chicago, IL,1994, 181–190.
  11. [11] G.D.P.K. Seneviratna & H. Krawinkler, Modifications of seismic demands for MDOF systems, Proc. 11th World Conf. onEarthquake Engineering, Acapulco, Mexico, 1996, paper no.2129.
  12. [12] P. Bazzurro, C.A. Cornell, N. Shome, & J.E. Carballo, Acomparison of three proposals for characterization of MDOFnonlinear seismic response, Journal of Structural Engineering,124(11) 1998, 1281–1290. doi:10.1061/(ASCE)0733-9445(1998)124:11(1281)
  13. [13] R.K. McGuire, A simple model for estimating Fourier amplitude spectra of horizontal ground acceleration, Bulletin of theSeismological Society of America, 68(3), 1978, 803–822.
  14. [14] J.W. van de Lindt & J.M. Niedzwecki, An inverse-reliabilityapproach to generating composite seismic response spectra,International Journal of Modelling and Simulation, (2), 2002,47–56.
  15. [15] J.W. van de Lindt & J.M. Niedzwecki, Environmental contouranalysis in earthquake engineering, Engineering Structures,22(12), 2000, 1661–1676. doi:10.1016/S0141-0296(99)00114-5
  16. [16] Northern California Earthquake Data Center (NCEDC), Uni-versity of California at Berkeley, 2000.
  17. [17] L.D. Lutes & S. Sarkani, Stochastic analysis of structuraland mechanical vibrations, 1st ed. (New York: Prentice-Hall,1997).
  18. [18] J.W. van de Lindt & J.M. Niedzwecki, Methodology forreliability-based design earthquake identification, Journal ofStructural Engineering, 125(2), 2000, 1420–1426. doi:10.1061/(ASCE)0733-9445(2000)126:12(1420)
  19. [19] T. Usami, S. Gao, & H. Ge, Elastoplastic analysis of steelmembers and frames subjected to cyclic loading, EngineeringStructures, 22, 2000, 135–145. doi:10.1016/S0141-0296(98)00103-5
  20. [20] T.K. Caughey, Random excitation of a system with bilinearhysteresis, Journal of Applied Mechanics, 237, 1960, 212–232.
  21. [21] R.W. Clough & J. Penzien, Dynamics of structures (New York:McGraw-Hill, 1993).
  22. [22] R.N. Miles, Spectral response of a bilinear oscillator, Journalof Sound and Vibration, 162(2), 1993, 319–326. doi:10.1006/jsvi.1993.1168
  23. [23] E.H. Vanmarcke & S.-S.P. Lai, Strong-motion duration andRMS amplitude of earthquake records, Bulletin of the Seismological Society of America, 70(4), 1980, 1293–1307.
  24. [24] D.E. Cartwright & M.S. Longuet-Higgins, The statistical distribution of the maxima of a random function, Proc. RoyalSociety of London, A237 1956, 212–232.
  25. [25] P.G. Somerville, N.F. Smith, R.W. Graves, & N.A. Abrahamson, Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effectsof rupture directivity, Seismological Research Letters, 68(1),1997, 199–222.
  26. [26] M. Rezapour & R.G. Pearce, Bias in surface-wave magnitudeMS due to inadequate distance corrections, Bulletin of theSeismological Society of America, 88(1), 1998, 43–61.
  27. [27] L.D. Lutes, The Gaussian assumption in equivalent linearization, 8th ASCE Joint Specialty Conf. on Probabilistic Mechanics and Structural Reliability, Notre Dame, ID, July 24–26,2000, paper no. PMC2000-334.

Important Links:

Go Back