International Journal of Robotics and Automation,, Vol. 45, No. 10, 2025

An Open Access Paper

MULTI-REGIONAL ECONOMIC DISPATCHING
AND DEMAND RESPONSE STRATEGIES OF
SMART GRID BASED ON REINFORCEMENT

LEARNING PERSPECTIVE

Zhiqing Zhou"

Abstract

The study addresses smart grid challenges (diversity, randomness,
flexibility from electric vehicles, and smart buildings) by construct-
ing a two-layer optimization model for dynamic retail pricing and
load-unit demand response. The modified model uses reinforcement
learning to learn the optimal electricity price, thereby balancing grid
stability and user energy consumption. Through numerical simula-
tion verification experiments, it was found that the power company’s
total revenue value and the load’s total cost value in the research
model were 7424.6 and 4152.8, respectively. Compared to the ran-
dom parameter method, the difference was the smallest and better
than the other two algorithms. Experiments have shown that price-
based demand response models based on reinforcement learning can
effectively solve related problems in unknown electricity market envi-
ronments, and have important application value in maximizing social

welfare in unknown market environments.
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1. Introduction

In recent years, computer, network communication, and
control technologies have driven significant changes in hu-
man society, leading to the information age marked by
digitization, networking, and intelligence. The Power Grid
(PG) is evolving into a Smart Grid (SG) due to this shift
[1]. With increasing energy demand and depleting fossil
fuels, traditional PGs face inefficiencies and maintenance
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challenges, failing to meet growing energy needs and en-
vironmental goals. SG is an emerging power technology
that is replacing traditional PG to achieve sustainable
development [2]. Operating SG requires flexible integra-
tion of distributed and renewable energy sources to ensure
high-quality power services and grid security. The integra-
tion of information in SG, especially electric vehicles, has
made Demand Response (DR) a key research area [3, 4].
DR management adjusts electricity consumption patterns
through pricing or incentives to manage PG operations ef-
fectively. This study employs non-model-based Reinforce-
ment Learning (RL) algorithms to solve price-based DR
problems in SG.

2. Related Works

The inclusion criteria for this literature search focus on
SG’s multi-regional economic dispatch and DR strategy, as
well as research based on the RL perspective. Exclusion
criteria include unrelated topics or research methods that
do not meet the criteria. The search databases cover au-
thoritative platforms such as IEEE Xplore and ACM Digi-
tal Library. The search terms include ”smart grid”, ” multi-
regional economic dispatch”, ”demand response strategy”,
"reinforcement learning”, etc., to ensure the comprehen-
siveness and accuracy of the literature review and the
transparency and repeatability of the research.

Currently, SG technology is maturely applied in power
distribution, generation, and consumption. Ullah et al.
designed an energy optimization strategy using a multi-
objective genetic algorithm, achieving 24% and 28% reduc-
tions in operating costs and carbon emissions with/without
DR plans [5]. Kumari et al. proposed a secure DR model
using RL and Ethereum blockchain to reduce energy con-
sumption and costs [6]. Apostolopoulo et al. introduced
a 2-stage algorithm, formulating the DR problem into a
game theory framework to determine optimal electricity
consumption and pricing [7]. Aladdin et al. proposed a
multi-agent RL approach for efficient DR in SGs, reduc-
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ing costs and peak-to-average ratio while maintaining user
satisfaction [8]. Hafeez et al. proposed a wind-driven bac-
terial foraging algorithm to schedule Internet of Things-
supported residential device electricity consumption, low-
ering peak power costs and enhancing user comfort [9].
Salazar et al. proposed an RL-based DR pricing and strat-
egy, combining price and incentive-based DR management,
effectively managing consumer demand [10]. Gharbi et
al. found Dutch-style auctions superior in a supply-driven
electricity market [11]. Reka et al. established a privacy-
based DR model using machine learning for residential con-
sumers in a cloud fog-based SG environment [12]. Alharbi
proposed an SG DR framework based on Internet of Things
house integration, optimizing quantitative DR supply [13].
Zarei et al. proposed a multi-objective optimization for op-
timal power flow in disaster recovery, achieving peak shav-
ing/valley filling with 20% DR [14]. Yu et al. proposed
a lightweight authentication protocol for DR management
in resource-limited environments, ensuring secure mutual
authentication and anonymity [15]. Bagherpur et al. uti-
lized RL to improve DR plans in SG, enhancing system
reliability and adjusting pricing models based on market
strategies [16].

Jalali Khalil Abadi Z et al. developed a fuzzy logic-
based scheduling algorithm for PG task scheduling and re-
source management, offering low computational complex-
ity. However, due to the dependence of fuzzy logic rules on
expert experience, this algorithm was subjective and might
reduce the accuracy of scheduling [17]. Navarro Gonzalez
F J et al. proposed an irrigation scheduling algorithm
for photovoltaic irrigation networks to save energy. How-
ever, its performance might be affected by the instability
of photovoltaic power generation, and the stability of irri-
gation scheduling under different lighting conditions needs
further research [18]. Zhang S et al. proposed an urban
electric vehicle parking system Internet for vehicle-to-grid
dispatching to improve public services in smart cities, but
it might face data security and privacy issues, and large-
scale deployment costs were high [19]. Das P et al. pro-
posed a two-stage electric vehicle charging and discharging
scheduling model to reduce transmission network pressure.
However, this model might not fully consider regional PG
differences and the diversity of user charging habits, which
poses practical challenges [20]. Hajari S et al. studied
the impact of photovoltaics, wind energy, gas turbines,
and energy storage systems on distribution network reli-
ability, finding that distributed generation integration en-
hances reliability [21]. Yadav AK et al. researched the
contact line model in interconnected synchronous phasor
networks for grid observability and reliability, identifying
the most reliable deployment locations for phasor measure-
ment units [22]. Mahajan V et al. proposed using discrete
Markov chains for multi-state modeling of renewable en-
ergy and energy storage devices, overcoming the shortcom-
ings of traditional methods, and found that the application
of this method reduced active power losses and improved
power flow [23]. Mahajan A K'Y V et al. discussed opti-
mizing the number of deployed phasor measurement units
and handling interruptions during anomalies, considering

zero injection busbars and network observability /reliabil-
ity [24].

In summary, various algorithm strategies proposed in
this field, such as the multi-objective genetic algorithm
and RL algorithm, have demonstrated their effectiveness.
However, there has been a lack of in-depth exploration into
the differences in applicable scenarios, performance com-
parisons, and potential conflicts among these algorithms.
The effectiveness of different algorithms under different
grid structures and operating conditions has not been thor-
oughly analyzed, nor has the possibility of collaboration
or substitution between algorithms been considered. Fur-
thermore, the gap between experimental environments and
actual SG applications has also not been addressed. In
addition, current research faces critical gaps (lack of inte-
grated multi-regional economic scheduling-DR strategies),
limitations (poor user privacy protection, dynamic adapt-
ability, and real-grid generalizability), and contradictions
(inconsistent peak load reduction outcomes across studies).
Future directions should focus on developing unified multi-
region strategies, enhancing algorithm synergy in complex
grids, and validating through large-scale field experiments.
Based on RL, this study designs a dual-layer optimized dy-
namic pricing model consisting of dynamic retail pricing of
power companies and optimal DR of load units, enabling it
to adapt to the dynamic electricity market environments.

This Q-learning-based dual-layer dynamic pricing model
outperforms traditional static/game theory methods. Key
innovations:

(1) Real-time adaptive pricing captures nonlinear electric-
ity price demand relationships through Q-learning, re-
placing predefined rules;

(2) Unlike single-stage game equilibrium, the dual-layer
framework achieves bidirectional optimization between
utility pricing and user load adjustment through RL;

(3) Data-driven approach eliminates reliance on perfect
information assumptions in game theory. Compared
with two-stage games, its advantages include cross-
cycle optimization through discount factors, dynamic
strategy adaptation through exploration mechanisms,
and parallel computing relative to Nash equilibrium
iterations. Therefore, this model not only improves
the flexibility and robustness of the power system but
also provides an effective demand management tool for
power companies, which helps promote the utilization
of renewable energy and the sustainable development
of the power system.

3. Construction of SGPDR Model Based on RL

3.1 SGPDR Model Design

The price-based DR objective is to coordinate the energy
consumption of a limited number of load units within a
certain period in response to dynamic retail unit prices,
thereby achieving the weighted sum goal of profit and
load comprehensive cost for the power company. Based
on this, this study establishes a Price-based Demand Re-
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Figure 1. Price-based DR model for SG.

sponse model for the Smart Grid (SGPDR) model (Figure
1). The model has two levels: the upper target is to max-
imize the power firm’s profit, and the lower is to minimize
the load comprehensive cost.

The retail electricity market in Figure 1 includes two lev-
els: power companies (upper level) and loads (lower level),
with information flowing in both directions. Among them,
the load (lower layer) transmits energy demand informa-
tion to the power company, and the power company (up-
per layer) releases dynamic retail price information to the
load. This study analyzes the operational data and load
unit characteristics of power companies, combined with ex-
pert discussions, technical documents, and historical data,
to collect and verify customer needs and technical require-
ments, avoiding traditional surveys. Based on the impact
of demand on user satisfaction, the Kano model (basic,
expected, and exciting attributes) is used to classify the
demand, ensuring coverage in both business and technical
domains. Normally, loads are divided into two categories:
Non-schedulable Load (NSL) Ny and schedulable load Ny
This study proposes a General Schedulable Load (GSL) G,
and innovatively considers more flexible ones like Plug-in
Electric Vehicle (PIEV) v, as shown in (1).

Nyg=Gy,Uvw (1)

At this point, the energy consumption of the GSL is
shown in (2).

G
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In (2), T represents a certain period of time. &; repre-
sents the price elasticity coefficient of the schedulable load
at time ¢t which is usually negative. pﬁt and eit respec-
tively represent the actual energy consumption and Energy
Consumption Demand (ECD) of the GSL n at time ¢ . 5,
and \; represent the retail and wholesale electricity prices
at time ¢t. When the energy consumption of the GSL n
is pﬁt, the remaining required energy cannot be satisfied,
leading to dissatisfaction of load unit n. The dissatisfac-
tion function for this level of dissatisfaction is shown in

(3).
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In (3), & and BY represent the satisfaction coefficients
related to the load unit. This function indicates that a
significant decrease in demand will lead to higher levels

of dissatisfaction. In practical situations, the reduction in
demand for GSL n is limited, as shown in (4).

DR™ < e§, — 1, < DR ()

In (4), DR™® and DR™* respectively represent the Up-
per and Lower (U-L) limits of the demand reduction for
GSL n. If both are constant, the energy consumption range
of pg’t can be determined. PIEVs are flexible distributed
units due to the characteristics of their onboard batteries,
and their energy consumption is shown in (5).
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In (5), py, 4 eny and 7, , represent the actual energy
consumption, ECD, and received Retail Electricity Price
(REP) of electric vehicle n at time t.p,,*”° represents the
rated power of PIEV n. The Charging and Discharging
(C/D) power of electric vehicles cannot exceed their rated
power at any time. The calculation of PIEVs considering
battery self-consumption and C/D point efficiency is shown

in (6).
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In (6), EL and E? represent the battery level at the
end and beginning of PIEV charging, respectively. fiy ¢
represents the C/D efficiency of PIEV n at t.C™ and CM
are the U-L limits of PIEV battery capacity. The battery
capacity of an electric vehicle must not exceed its maxi-
mum capacity at any time. The dissatisfaction function of
electric vehicle owners is shown in (7).
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In (7), af and B} represent the satisfaction coefficients

related to electric vehicle n. However, frequent C/D of

electric vehicles can shorten their lifespan, so the definition

for quantifying this impact is shown in (8).
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In (8), k represents the degradation coefficient.
The energy need for NSL should be met at all times, and
their energy consumption is shown in (9).

PR = et € T (9)

In (9), pp%* and en " respectively represent the actual
energy consumption and ECD of non-schedulable n at time
t. From the perspective of load, it is expected to determine
its optimal energy consumption to minimize the overall

cost, as shown in (10).
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In (10), p is the energy consumption vector of all joining
loads all in the period. The three parts in the formula
correspond to the three kinds of loads mentioned above.

The goal of the power company is to establish the opti-
mal REP to achieve maximum profit, and its solving model
is shown in (11).
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In (11), n represents the REP gained by overall loads.
¢t represents the total electricity purchased at time ¢. The
first three parts of the formula correspond to the revenue
generated by the power company from selling electricity to
NSL, GSL, and PIEV loads, respectively. The last part
represents the cost of electricity bought by power com-
panies from higher-level grid operators. Among them,
Ct = ZnENn Pt + ZnENS Pf,t + Znev pr‘{,tv and the

profit of the power company at t is recorded as U; =
non

ZnGNNn Mt Pt + ZneNg ng,tpg,t + ZnGV nxtpr‘{,t -
Atct . Therefore, (11) can be simplified into (12).
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In (12), n_,, and 7, are the U-L limits of REPs. N rep-
resents the set of all loads. The study assumes a linear
relationship between electricity price changes and demand
reduction, supported by price elasticity theory showing
short-term near-linear user responses to small price fluctu-
ations (£20% benchmark). Real-grid data confirm a sig-
nificant linear correlation (R? > 0.7) between load changes
and price adjustments within this range. The mathemati-
cal expression of the SG price DR model is shown in (13).
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In (13), o represents the weight coefficient, o € [0, 1].

3.2 Solution of SGPDR Model Based on RL

At present, there are some mature methods for solving the
PG-DR model, such as model predictive control, two-stage
stochastic programming, and robust optimization, but all
of them have limitations. Therefore, this study chooses the
RL method to solve the SGPDR model. The RL method
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Figure 3. SGPDR based on RL framework.

can adaptively determine the optimal strategy without re-
lying on accurate prediction of uncertain parameters and
accurate load models. Figure 2 shows the basic principle
of RL.

In Figure 2, RL explores unfamiliar environments by
taking continuous actions and optimizing behavior plans
based on the rewards given by the environment, ultimately
finding the optimal strategy with the highest cumula-
tive reward. This study establishes an RL-based SGPDR
model to determine the optimal retail pricing, as shown in
Figure 3.

In Figure 3, all loads serve as the environment, and the
power company considers them as intelligent agents. The
REP represents the actions taken by the intelligent agents
towards the environment. The actual energy consumption,
energy demand, and time indicators denote the state, and
the combined revenue and load cost of the power company
are considered rewards. Then, this study further adopts a
Markov decision process to model the dynamic retail price.
Among them, this study defines the mapping from state
to action as strategy 0, and the goal of the dynamic retail
price is to search the best 9* which is able to maximize
cumulative returns, as shown in (14).
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In (14), S and A are the state and action sets in Markov
decision process. r' and s’ represent the reward and envi-
ronmental status at time ¢.

Finally, this study takes the Q-learning to analyze the
selection of REP for power companies. According to the
basic rule of Q-learning, the optimal action value function
represents beginning with state s, taking a, and then using
the maximum cumulative discount of 0* for return. It
follows the Bellman optimal equation, as shown in (15).

Q" (s,a) =<[r(s,a) + ymax Qg (s',a")]  (15)



def generate actions(current price, demand_elasticity, time_period):
# Define baseline price and thresholds
baseline price = 0.8 # USD/kWh
core_lower = baseline_price * 0.8
core upper = baseline price * 1.2

# Dynamic action space generation
if core lower <= current price <= core_upper:
if demand elasticity > 0.3: # High elasticity
actions = [round(-0.01 * i, 2) for i in range(1, 3)] + +\
[round(0.01 * 1, 2) for i in range(1, 3)]
else: # Normal
actions = [-0.02, -0.01, 0, +0.01, +0.02]
else: # Extreme price zone
if time_period == 'peak:
actions = [-0.05, -0.02, 0, +0.02] # Cap +5% during peak
else:
actions = [-0.1, -0.05, 0, +0.05, +0.1]

return actions

# Q-learning update with dynamic actions

state = observe grid_state()

actions = generate_actions(state['price'], state['elasticity'], state['period'])
action = epsilon_greedy select(Q_table, state, actions)

next_state, reward = execute action(action)

Q update(Q _table, state, action, reward, next_state)

Figure 4. Flow chart of the pseudo-code for the multi-
granularity adaptive discretization algorithm.

In (15), s’ represents the state at the next moment. a’
represents the action taken in state s’. ¢ represents the
expected operator for the next state and reward random-
ness. Therefore, as long as Q*(s,a) is obtained, the opti-
mal strategy can be determined, as shown in (16).

0°(8) = arg gmax Q" (s, ) (16)

To better reflect the dynamic power market, a multi-
granular adaptive discretization algorithm is then pro-
posed. Figure 4 shows the algorithm pseudo-code.

The study proposes a dynamic electricity pricing strat-
egy: prices are divided into a core range (benchmark
+20%) with fine-grained 1 — 2% adjustments and an ex-
treme range using 5 — 10% coarse adjustments, based on
historical data showing 90% fluctuations within +15%.
Pricing actions adapt dynamically: core zones use +2%
steps, while near limits shift to #5%. During peak de-
mand, price hikes are capped (+5% max) to reduce user
resistance, while renewable surplus periods employ finer
price cuts (0.5% steps) to boost consumption.

4. Performance Testing of SGPDR Model Based
on RL

In the numerical simulation verification experiment of the
SGPDR model based on RL, nine schedulable loads (in-
cluding 5 GSLs and 4 PIEVs) and five NSLs are considered
as DR problems, as show in Table 1 [25].

The study uses an IEEE 14-node power market simula-
tor with PJM market data for parameter tuning. Grid
search and cross-validation optimize learning rate, dis-
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Figure 5. ECD of NSLs and schedulable loads.

count factor (for convergence), and action step size (to
boost revenue). Key metrics include power company rev-
enue (¥/day), user satisfaction (load demand fulfillment
rate, %), and algorithm convergence speed (iterations).
The comparison results before and after adjustment are
shown in Table 2 [26].

In Table 2, all evaluation indicators have been effectively
improved in the optimized parameter combination. The
daily average income, load satisfaction rate, convergence
iteration times, and standard deviation of electricity price
fluctuations have increased by +17.1%,+7.7%, —37.5%,
and 33.3%, respectively.

The NSL and schedulable energy consumption data are
sourced from open-source data of a certain gas and power
company, as shown in Figure 5.

In Figure 5, the ECD peak of NSL occurs from 13:00
to 17:00. The ECD trend of GSL is basically consistent,
with two peak demands occurring between 10:00-15:00 and
19:00-22:00, respectively. The ECD of PIEV is concen-
trated in two time periods: 1:00-7:00 and 19:00-24:00. If
the schedulable loads’ actual energy consumption coordi-
nates wrong, the electricity burden on the PG will greatly
increase, thereby affecting the normal operation of the elec-
tricity market economy. In the simulation experiment,
wholesale prices are decided by the PG operator.

In the simulation, the REP reduces or grows by 0.1 times
in each iteration, indicating that the action space is dis-
crete. The results of three optimal retail electricity pricing
strategies for load days are shown in Figure 6.

In Figure 6, the trend of wholesale and REPs is similar,
which is in line with maximizing social welfare. Among
them, there are two sharp price drops at 12:00 and 16:00.



Table 1

Setting of the Experimental Parameters.

Parameter category

The parameter name

The parameter name

Learning rate
Discount factor
Probe rate
Basic electricity price (yuan / kWh)
Price elasticity coefficient
Load adjustment upper limit of (%)
Response Delay Time (hours)
Sample size
Random perturbation of the standard deviation

The Q-learning parameters

Parameters of electricity price model
Demand response parameters

Monte Carlo simulations

0.2
0.9
0.3
0.7
-0.5
Core: 2% <br> Edge: £5%
1
1000
5% Benchmark load

Table 2

Test Results Before and After Parameter Tuning.

Index Before tuning After tuning Improve the range

Daily average income (yuan) 24,500 28,700 +17.1%

Load satisfaction rate (%) 82.3 88.6 +7.7%

Convergence iteration times 1,200 750 -37.5%

Electricity price fluctuation standard deviation 0.18 0.12 -33.3%

=10 ::— wilolesale - f}i\li ‘ Figure 9.

z In Figure 9, at the beginning of the iteration, the power
z —_— company does not know how to establish a REP that can
g3 § : 'S /f‘-;\u\" . bring a greater reward. As the iteration progresses, the
R — ISR, S—— RN Q of the three loads grows orderly and converges to the
2o o Sudden drop max at last, because the power company acknowledges the
" 5 10 15 20 25 dynamic response of the loads by trials and errors. To

Time(h)

Figure 6. Optimal REP strategy for day 5.

The p-value of the price reduction in both periods is less
than 0.05 , which is statistically significant. The price dif-
ference of each load unit during non-peak, mid-peak, and
peak periods is as follows: non-peak>mid-peak>peak pe-
riod. This is related to the fact that the REP coefficient
during peak hours is smaller than mid-peak and off-peak.
After gaining the optimal REPs for all loads, the optimal
energy consumption for each load unit can be directly cal-
culated, as shown in Figure 7.

In Figure 7 (a), the optimal ECD peak of GSL occurs
in two time periods: 10:00-15:00 and 19:00-22:00. The
GSL’s actual energy consumption peak also occurs during
these two time periods, and the overall trend of the two
is consistent. Figure 7 (b) shows that the optimal ECD
peak of PIEV occurs in two time periods: 11:00-14:00 and
18:00-24:00. To alleviate power pressure and increase its
own profits, PIEV chooses to discharge during this peak
period.

Figure 8 shows the decrease in total ECD for each
schedulable load. Compared to other schedulable loads,
GSL6 has a smaller reduction in ECD volume. This is be-
cause load units with a larger satisfaction coefficient tend
to have smaller demand reductions, otherwise, it will in-
crease the cost of dissatisfaction. To determine whether
the Q-value of the model converges to the max-value, this
study selects the Q (sg,a7) of each load, as exhibited in

discuss the influence of the profit weight coefficient, the
study uses the Monte Carlo method to capture the trend
of the average REP, the power company’s total income,
and the total load cost with the change of the profit weight
coefficient, as shown in Figure 10.

Figure 10 shows that as the profit weight coefficient rises,
the average REP increases from ~ 4¥/kWh to 5.1¥ /kWh,
power company revenue grows, and total load cost surges
from 0¥ to 9,000¥. Higher weight prioritizes maximiz-
ing utility profits over minimizing user costs, driving price
hikes. The price increase has reduced energy consumption
and slowed down the overall growth rate.

The study tests the model under three scenarios: Sce-
nario 1 (low: 100 load curves, £5% price fluctuation for
residential areas), Scenario 2 (moderate: 500 curves, +10%
for commercial zones with solar), and Scenario 3 (high:
1000 curves, +20% for industrial areas with wind volatil-
ity). Evaluation metrics include grid-side peak-valley dif-
ference and revenue volatility, user-side cost changes and
response rates, and algorithm stability /convergence speed.
The test results are shown in Table 3.

Table 3 reveals a 38% reduction in the peak-valley dif-
ferential rate but a 130% increase in yield volatility due
to aggressive price adjustments. User response rates de-
cline with higher fluctuations, suggesting extreme pricing
discourages participation. This algorithm maintains sta-
bility in continuous action space, but requires 2.5 times
the training time, making it suitable for residential appli-
cations (with a cost advantage of -3.2%). Based on the
non-price-based DR scenario, the daily energy consump-
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Table 3

Model Performance Results in Different Price Fluctuation Scenarios.

Scene

Low volatility

In the fluctuation

High volatility

Load /price fluctuations 100, £5% 500, +£10% 1000, +20%
Bee valley difference rate 15.20% 12.70% 9.40%
Return fluctuation rate 8.10% 12.30% 18.60%
Changes in electricity bills -3.20% -5.80% -8.10%
Response ratio 68% 54% 41%
Convergence rate 1,500 2,200 3,800
52
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Figure 8. Reduction in total ECD for schedulable loads.
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Figure 10. The impact of parameters on average REP,
total revenue of power companies, and total load cost.

tion comparison of all loads in the two scenarios is shown
in Figure 11.

Figure 11 shows that price-based DR adjusts energy
consumption during high electricity price periods by co-
ordinating load units, smoothing the energy consumption
curve, and improving social welfare, thereby reducing en-
ergy consumption fluctuations. Compared to DDD, PDP,
and RPM methods in Figure 12, the proposed model
demonstrates higher efficiency and stability in balancing
grid demands and economic benefits.

In the simulation, this study sets the initial Lagrange
multiplier to 0 . In PDP, a = 0.05,0 = 2.5, €feas = €0
1072, and 8 = 0.2. The original random dual-vector is
0.5. The REP trends obtained by the four methods are the



Table 4

Test Results of the Model in Realistic Scenarios.

Index Traditional method

Mean daily peak-valley difference rate
Wind power utilization rate
Residents participation rate

Research model Improve the range
28.5% 19.2% -32.6%
68% 82% +20.6%
45% 73% +62.2%

Business user savings E120 per month E185 / month +54.2%
Decisions delayed 200ms 90ms -55%
Abnormal situation treatment success rate 72% 89% +23.6%
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Figure 11. Comparison results of daily energy consumption
for all loads.
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Figure 12. Comparison results of four algorithms.
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Figure 13. Numerical comparison results of algorithms.

same. Compared to the energy consumption curves of the
DDD algorithm and PDP algorithm, the energy consump-
tion curve obtained by the research model is smoother.
Meanwhile, the REP and energy consumption curve ob-
tained from the research model are closest to those ob-
tained from the random parameter method. The numeri-
cal comparison results of total revenue, social welfare, and
total load cost for power companies under four algorithms
are shown in Figure 13.

Figure 13 compares four algorithms: the RPM model
achieves the highest social welfare (6359.5), while the
proposed RL-based price-based DR model ranks second
(6266.9), outperforming DDD and PDP. The model’s
power company revenue (7424.6) and load cost (4152.8)
are closest to RPM’s results. Practical validation using
Aachen University’s 2023-2024 SG project (2,800 house-
holds, 150 commercial users across three communities)
confirms its effectiveness in real-world scenarios. The re-
search model is applied to the grid and the results with
the traditional methods of the grid are shown in Table 4.

Table 4 demonstrates the model’s advantages: the
average daily peak-valley difference rate decreases by
32.6%(28.5% — 19.2%), the utilization rate of wind power
generation increases by 20.6% to 82%, the resident partic-
ipation rate increases by 62.2% to 73%, commercial elec-
tricity costs are saved by 54.2%, and decision-making de-
lays are reduced by 55%. The success rate of handling
abnormal situations has increased by 23.6%, reflecting the
optimization of resource allocation, faster response speed,
and stable PG.



5. Conclusion

A dynamic pricing model based on RL was designed to ad-
dress the uncertainty of load unit electricity prices and en-
ergy consumption behavior in the electricity market, which
can adapt to flexible changes in load and dynamic elec-
tricity market conditions. The research results indicated
that price-based electricity price compensation effectively
coordinated the energy consumption of load units and im-
proved the welfare of the retail electricity market. Com-
pared with DDD, PDP, and RPM, the REP /energy con-
sumption curve of this model was closest to RPM, with so-
cial welfare of 6266.9 (the smallest difference from RPM),
power company revenue of 7424.6, and load cost of 4152.8,
which were better than DDD and PDP. This study shows
that the RL-based price-driven DR model effectively ad-
dresses the DR issue in unknown electricity markets. The
innovation of this study lies in three aspects. First, the
RL-based dynamic pricing model provides a novel way to
manage load and market uncertainties. Second, the price-
based electricity price compensation mechanism optimizes
energy consumption and boosts market welfare. Third,
the successful application of the RL-based DR model in
unknown markets paves the way for future research and
practical use. However, this study also has limitations,
such as model validation relying solely on numerical sim-
ulations rather than real-world prototype testing. Future
work should focus on large-scale prototype design and inte-
gration of advanced artificial intelligence and data analysis
technologies. Real-time data can be used to optimize pa-
rameters and improve responsiveness to market and load
changes, operational efficiency, and social welfare.
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