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Abstract

With the increasing application scope of the current power system,

people’s attention to power scheduling and control strategies in

the power system is constantly increasing. At present, there are

problems with delayed response and low scheduling accuracy in

the power dispatch and control model scheduling of the power

system. To address this issue, this study utilises manual sampling

algorithms to improve the deep forest algorithm and proposes a

novel improved algorithm. By using this algorithm to construct

a power dispatch control model, we aim to improve the accuracy

and response speed of power dispatch. Comparative experiments on

improved algorithms showed that the classification accuracy of this

algorithm was 97.7% and the classification time was only 1.8 s.

After testing the constructed model, it was found that the response

accuracy of the model was as high as 94.4%. The power dispatch

control strategy proposed based on this model could control the

power stability in the power system and reduce the dispatch cost by

78.9%. The above results indicate that the proposed improved model

can improve the accuracy and response time of power dispatching.

Key Words

Power system, scheduling control model, manual sampling algorithm,

deep forest algorithm

1. Introduction

With the improvement of the economic level, many
regions attach increasing importance to the accuracy
and rationality of power system dispatch control (PSDC)
strategies [1], [2]. Currently, many scholars have researched
the PSDC strategies [3], [4]. For example, Khaloie et al.
designed a day-ahead and inter-day scheduling model to
address the problem of low power generation efficiency and
limited dispatchable electricity in current power plants.
Comparison with other models showed that it could
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improve the scheduling efficiency of power plants [5]. To
optimise off-grid hybrid microgrid systems with different
load scheduling strategies, Ishraque et al. designed a PSDC
strategy based on load tracking and predictive scheduling.
This strategy was used for detection in practical situations
and could increase the effect time of the power grid system
to 78.6% of the original [6]. Li et al. proposed a PSDC
scheme built on a continuous time distribution algorithm
to address the issue of low power generation efficiency in
biomass power plants. The comparison showed that this
strategy could increase the power generation efficiency
of the power plant by 67.8% [7]. However, the above-
mentioned PSDC strategy still faces problems of long-
time consumption, high cost, and delayed response [8].

Therefore, proposing a scheduling control model that can
improve the speed of model effects, reduce scheduling costs,

and enhance the efficiency of power utilisation in the power

system is an urgent problem to be solved.
The synthetic minority oversampling technique

(SMOTE) is widely used in various models due to
its powerful data processing capabilities [9], [10]. For
example, Dablain et al. constructed a new model based
on the SMOTE algorithm to handle the issue of data

imbalance in current machine-learning models. Compared
with traditional models, this model has improved data
balancing performance by 76.5% [11]. The multi-grained
cascade forest (gcForest) algorithm was widely used due to
its excellent learning representation ability [12], [13]. For
example, to solve the problems of high complexity and long

computation time in current deep neural networks (DNNs),
Chen built an improved deep learning algorithm based on
the gcForest. This algorithm reduced the computational
complexity of DNN by 87.9% [14]. Ma et al. proposed a
hash filtering mechanism based on the gcForest to deal
with the problems of long computation time and high cost
in current distributed forest systems. This mechanism was
used for detection in practical situations, and it was found
that the computational time of the system was reduced by
67.6% [15].

In summary, the current PSDC model cannot meet

the expected requirements, and there are still problems
such as inaccurate power scheduling and untimely response
time in power dispatching. The improved gcForest based
on SMOTE can improve computation speed and accuracy.
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Therefore, this study constructs a PSDC model grounded
on this algorithm to improve the response time and
scheduling accuracy of the model. The innovation lies in
the combination of SMOTE and gcForest algorithms, using
SMOTE to solve the overfitting phenomenon in gcForest
and improve the accuracy of the algorithm.

2. Methods and Materials

2.1 Improved gcForest Model Based on SMOTE
Algorithm

The innovative development of society has gradually
attracted people’s attention to PSDC, but traditional
PSDC systems are no longer able to meet the power
dispatching needs of large-scale power grids [16]. Therefore,
it is necessary to optimise the traditional PSDC model
to improve its rationality and timeliness. The gcForest
algorithm is a machine learning algorithm that constructs
an integrated deep model based on decision trees to
achieve deep extraction of data [17]. This study applies
the algorithm to the PSDC model to improve the control
accuracy of the control model and the rationality of power
scheduling. Figure 1 is the flowchart of the gcForest model.

In Fig. 1, the data extraction process of the gcForest
model based on the deep forest is divided into four
steps: multi-granularity scanning (MGS), random forest
training (RFT), feature extraction, and feature fusion
and classification. In MGS, samples are slide sampled
by setting sliding windows of different sizes to obtain
feature sub-vectors of multiple dimensions. The obtained
eigenvectors are used in the RTF model, and each random
forest obtains a probability vector with the same number
of categories through the RTF model. These probability
vectors can reflect the likelihood of each category. Feature
extraction is to combine these probability vectors to form a
representation vector matrix, and then use sliding windows
of different sizes to perform inverse sampling on the formed
vector matrix rows to achieve true feature extraction.
Finally, the extracted feature vectors are fused and
classified. All the extraction results of random forests are
concatenated together for output, and finally, the output
results are analysed. MGS can be segmented into multiple
different stages. First, the attribute features of the raw data
are scanned for the first time by sliding the window. Second,
the attribute features extracted during the initial scan form
a new dataset and are used as a new sample. These newly
formed samples are trained to obtain different forest types.
Each forest type corresponds to the distribution vectors of
different categories of the sample data. Finally, all obtained
vectors are combined, and the combined samples are
used as inputs for subsequent operations. These steps are
beneficial for extracting more accurate feature information.
When performing RTF, a cascaded forest structure is
used to further improve the accuracy of data extraction.
Cascade forest is composed of multiple decision tree forests,
with each forest containing one hyperparameter of decision
trees. The formal expression of cascading forests is

ft(x) = Ht[X, ft−1(x)] (1)

In (1), ft(x) is the output class distribution vector
of the t-th decision tree. t is the number of layers of the
decision tree. Ht represents the class distribution vector
of the total decision level output. x is the input value.
[X, ft−1(x)] is the distribution vector output from the
previous layer. The expression of the binary cascade forest
model is shown in (2)

g(x) = argmax[fT (x)]c (2)

[fT (x)]c is the c-th term of the class distribution vector
fT (x). The calculation of the binary cascade forest model
is shown in (3)

g(x) = argmax[ft(x)]c (3)

This model is highly sensitive to noise and other data,
which can easily lead to overfitting [18]. Given this, it
is necessary to optimise the gcForest algorithm in the
model to meet practical needs. The SMOTE algorithm can
solve the phenomenon of data imbalance in classification
problems, and its working principle is shown in Fig. 2.

In Fig. 2, the principle is to balance the dataset by
synthesising new minority class samples, thereby improving
model performance and reducing model overfitting. After
receiving data, the algorithm first selects a sample point
from the minority class samples and then calculates the
distance from that sample point to other sample points
in the minority class samples to find the closest sample
point. One or more samples are randomly selected from
the found sample points, connecting the selected sample
points with the previous ones, treating them as a new
sample, and adding them to the original dataset. By doing
so, the sample size of minority classes can be increased,
maintaining data balance and preventing overfitting. In
this process, the formula for sample generation is shown in
(4)

r = X + g · d (4)

In (4), X is the selected sample point, g is the distance
between two random points, and d represents the distance
between the two selected samples. The formula for sample
synthesis is shown in (5)

yn = yi + r(0, 1) · (yn − yi) (5)

In (5), yi and yn are two randomly selected samples.
r(0, 1) is a random number between 0 and 1. To improve
the overfitting phenomenon in the gcForest algorithm,
this study utilises the SMOTE algorithm to enhance it.
First, the data are processed using SMOTE to balance the
minority class sample data, and then the processed data
are input into the gcForest model for data analysis. The
improved gcForest algorithm is shown in Fig. 3.

In Fig. 3, after inputting the sample data, the data are
first input into the SMOTE module for data preprocessing.
Then, the module synthesises a new dataset by adding
minority class sample data. The synthesised new dataset
is input into the gcForest module, and the features in the
new dataset are accurately extracted through four steps:
MGS, RTF, feature extraction, and feature fusion. Finally,
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Figure 1. Flowchart of the deep forest model.

Figure 2. Principle of the SMOTE algorithm.

Figure 3. Improved deep forest algorithm.

the extracted feature information is output for subsequent
analysis.

2.2 PSDC Model Combining SMOTE and
gcForest

After SMOTE optimisation, the gcForest algorithm is
constructed into a control model to improve the control
accuracy of power system scheduling. Figure 4 shows the
basic framework of the SMOTR-gcForest control model.

In Fig. 4, the model includes a data input layer
(L1), a data preprocessing layer (L2), a data computation
layer (L3), and a data result analysis layer (L4). L1
receives sample data and standardises the data format

for subsequent calculations. Then, the data are input into
L2 for preprocessing operations. This layer will have a
SMOTE module that expands individual data from the
initial data to form a new dataset, ensuring data diversity
and preventing overfitting. The newly synthesised dataset
is transmitted to L3, and the feature information of
the newly synthesised dataset is extracted through the
MGS, RTF, feature extraction, and feature fusion steps of
the gcForest module in this layer. Finally, the extracted
feature information is input into L4 for processing and
classification. This model can accurately classify most data
information. This model is applied to the DC power system
and proposes corresponding power scheduling strategies
based on its output data to improve the accuracy and
rationality of the DC power system scheduling strategies.
The PSDC model based on SMOTE-gcForest is shown in
Fig. 5.

In Fig. 5, the model first collects various data from
the power dispatch system, inputs the collected data into
the control model, and uniformly formats the collected
data. Then, using the SMOTE algorithm, the data are
preprocessed to prevent overfitting and form a new dataset
for the power dispatch system. Using the gcForest model,
the newly formed dataset is subjected to feature extraction,
and then the extracted data is analysed. Based on the
analysis results, it is determined that there are problems
with the scheduling strategy of the power system. If there
are any problems, optimisation is based on the analysis
results to ensure the stable operation of the power system.
The stable operation of the power system also requires a
judgement of the power output. When collecting data from
the power system, it is necessary to consider the operating
cost, power index, and constraints of power output. The
operating cost of wind power is shown in (6)

P =

M∑
j=1

n∑
i=1

[αiJi,j + α2(Ĵi,j − Ji,j) + α3(Ĵi,j − Ji,j)] (6)

In (6), i is the i-th wind turbine in the wind turbine
unit, j is the j-th scheduling cycle of the wind turbine, J
is the output power of the wind turbine, n is the number
of wind turbines in a wind turbine, M is the number of
operating cycles during wind turbine scheduling, and αi, α2

and α3 are direct, overestimated, and underestimated cost
coefficients for wind energy. When wind turbines generate
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Figure 4. The SMOTR-gcForest model.

Figure 5. Power dispatching control model of SMOTE-gcForest.

limited power, they need to control the output power
through pitch angle. This increases the regulation pressure
and affects the stability of the power plant, so the power
limit of each unit should be minimised to ensure stable
operation of the system. The power limit state formula of
the system is shown in (7)

P1 =
1

a× b

M∑
j=1

n∑
i=1

Ji,j
max − Ji,j

Ji,j
max − Ji,jmin

(7)

In (7), Ji,j
max and Ji,j

min are the maximum and
minimum output power of the wind turbine. In any period,
the relationship between the dispatching command in the
wind turbine and the output power of the wind turbine is
shown in (8)

n∑
i=1

Ji = Jp + Jl (8)

In (8), Jp represents the dispatch instruction power
during the wind farm dispatch cycle, p is the output power
of the wind turbine, and Jl is the power loss during the
operation of wind turbines. Any wind turbine unit has
an extreme value, which is the maximum and minimum
output capacity. During the operation of a wind turbine, its
output capacity should not exceed its own extreme value
to avoid damaging the structure of the wind turbine and
reducing its service life. The boundary expression of unit
power is shown in (9)

Ji,j
min ≤ Ji,j ≤ Ji,jmax (9)

In (9), Ji,j is the actual output power of the wind
turbine during actual operation. The output capacity of
wind turbines during operation is also affected by other

factors. A wind turbine cannot increase or decrease its
output power without standards, and it is necessary to
limit the output power of the wind turbine. The calculation
of limiting the output power of wind turbines is shown in
(10)

−ra∆t ≤ Ji,j+1 − Ji,j ≤ rm∆t (10)

In (10), ra and rm are the maximum values of the
downhill speed and uphill speed of the wind turbine
during uphill operation and ∆t is the cycle of scheduling
instructions for wind turbines. The inequality in (10) also
requires the addition of constraints to accurately calculate
the inequality. The general penalty factor is used to
constrain inequalities. The formula after adding penalty
factor constraints is shown in (11)

K = $

T−1∑
j=1

n∑
i=1

[min(0, (Ji
u − |Ji,j+1 − Ji,j |))] (11)

In (11), Ji
u is the maximum climbing amount of the

wind turbine, $ represents the penalty factor, and when
this value is set to 0 or infinite, and $ is used to constrain
the climbing rate of the wind turbine. If the climbing
amount of the wind turbine during operation does not
reach the constraint condition, constraint condition K will
take a maximum value to adjust and constrain the climbing
rate of the wind turbine. By outputting the results of the
model, the operating cost, power index, and constraint
conditions of the power system are judged, and based on
these results, the scheduling strategy of the power system
is optimised.
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Table 1
Basic Experimental Environment Table

Environmental Form Project Specification

Hardware environment CPU model Intel Core i9

CPU dominant frequency 2.30GHz The biggest rui frequency4.60GHz

GPU model NVIDIA GeForce RTX

Memory size 64GB DDR4 3200MHz

Memory; Storage 1TB NVMe SSD

Software environment OS Windows 10

Programming language Python 3.8.10

Python environment Anaconda 3

Version control Git 2.30.0

Figure 6. The algorithm classification accuracy and classification speed: (a) Algorithm accuracy and (b) Algorithm
classification time consumption.

3. Results

3.1 Performance Analysis of SMOTE-gcForest
Algorithm

To verify the superiority of SMOTE-gcForest algorithm in
classification, this study conducts comparative experiments
with convolutional neural networks - particle swarm
optimisation (CNN-PSO), principal component analysis -
residual network (PCA-ResNet), and K -Means clustering
algorithm - recurrent neural network (Kmeans-RNN).
Table 1 shows the experimental setup.

Based on the above configuration, the experiment
selects 500 data points from the digital image dataset
MNIST to compare four algorithms. Figure 6 shows the
comparison results of data classification accuracy and
speed among four algorithms.

In Fig. 6(a), the classification accuracy of SMOTE-
gcForest algorithm is 97.7%, which is the highest among
the four algorithms. The classification accuracies of CNN-
PSO, PCA-ResNet, and Kmeans-RNN are 87.8%, 81.2%,
and 76.4%, respectively. In Fig. 6(b), the four algorithms
took 1.8 s, 5.6 s, 7.3 s, and 8.4 s to classify the raw
data. This indicates that the research algorithm has the

highest classification accuracy and the fastest classification
speed. F1 value is the harmonic average of algorithm
accuracy and recall rate, which is used to evaluate the
classification performance. The higher the value, the better
the classification performance of the algorithm. Figure 7
compares the F1 values and loss function values of various
algorithms.

In Fig. 7, the SMOTE-gcForest algorithm has the
highest F1 value and the lowest loss function value,
indicating the lowest algorithm performance. The F1 value
of this algorithm is 0.95, and the loss function value is 0.02.
The F1 value of CNN-PSO is 0.81, and the loss function
value is 0.04. The loss function value of PCA-ResNet is
lower than the first two algorithms, only 0.72, but the loss
function value is higher than the first two algorithms, at
0.12. The F1 value of Kmeans-RNN is the lowest among
the four algorithms, only 0.68, but its loss function value
is the highest, reaching 0.16. Figure 8 compares the error
values and spatial complexity of the algorithm.

In Fig. 8(a), the average error rate of SMOTE-gcForest
is 1.2%, and its error rate variation is relatively stable with
low fluctuation amplitude. The error rate of CNN-PSO
fluctuates greatly, with an average error rate of 3.6%. The
error rates of PCA-ResNet and Kmeans-RNN are 4.5% and
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Figure 7. F1 values and loss function values of the four algorithms.

Figure 8. Error values and spatial complexity contrasts: (a) Error value and (b) Space complexity.

5.8%, respectively. In Fig. 8(b), SMOTE-gcForest, CNN-
PSO, PCA-ResNet, and Kmeans-RNN have computer
space occupancy rates of 28.7%, 52.3%, 62.6%, and 72.4%,
respectively, during computation. Therefore, the research
algorithm has the highest classification accuracy, the
shortest classification time, the highest F1 value, and the
lowest loss function value. The comprehensive performance
of this algorithm is far superior to the comparative
algorithms, so this study uses this algorithm to construct
a PSDC model to improve the scheduling accuracy and
response speed of the model.

3.2 Empirical Analysis of PSDC Model Based on
SMOTE-gcForest Algorithm

After verifying the superiority of the SMOTE-gcForest
algorithm, the control model based on this algorithm is
analysed. A comparison is made between the PSDC model
based on SMOTE-gcForest algorithm, the widely used
PSDC model based on improved ant colony Optimisation
(ACO) algorithm, and the traditional PSDC model.
Figure 9 compares the response time and response accuracy
of three models.

In Fig. 9(a), the response accuracy of SMOTE-
gcForest reaches a maximum of 94.4%. The response
accuracy of ACO is lower than that of SMOTE-gcForest,
only 61.9%. The response accuracy of traditional models is
the lowest, only 45.3%. In Fig. 9(b), the response time of

Figure 9. A comparison of model response time and
response accuracy: (a) Accuracy rate and (b) Response
time.

the traditional power dispatch model is 9.4 s, the average
time of ACO is 5.7 s, while SMOTE-gcForest has the fastest
response speed, with a response time of only 1.8 s. Figure 10
shows the changes in electrical power of the power system
after controlling the power dispatch strategies proposed
based on three models.
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Figure 10. The electric power of a power system.

Figure 11. Number of orders and cost of power dispatching strategy based on three models: (a) Changes in the number of
instructins in the power system and (b) Cost reduction of power system dispatching.

In Fig. 10, before power dispatch, the power variation
of the power system is extremely unstable, with a
large fluctuation range. After proposing power dispatch
strategies based on three models, the changes in electric
power are relatively stable, and the magnitude of the
changes is approaching zero. Among the three models,
SMOTE-gcForest has the largest variation and the
strongest stability, with its electrical power fluctuating
between -59 W and 70 W. The electric power variation
range of the ACO model is between -100 W and 120
W. The variation of electric power in traditional models
is very similar to that before scheduling, with electric
power ranging from -200 W to 200 W. Figure 11 shows
the comparison of power dispatch costs and command
quantities based on three proposed models for power
dispatch strategies.

In Fig. 11(a), before the proposed dispatching strategy,
when the power system conducts power dispatching, the
number of instructions issued per hour is about 7. The
strategy proposed based on traditional models has reduced
the number of instructions issued to 6 times per hour,
with very low variation, which is the same as the number
before scheduling. The ACO model significantly reduces
the number of instructions issued by the power system, but
the reduction is not as significant as SMOTE-gcForest. The
research model reduces the number of instructions issued to

2 times per hour, greatly reducing operational complexity.
In Fig. 11(b), the PSDC strategy proposed based on three
models can significantly reduce the cost of power dispatch.
Among them, the SMOTE-gcForest model reduces power
dispatch costs the most, with an average of 78.9%, and
the frequency of reduction is relatively stable. The ACO
model performs slightly worse, with a cost reduction of only
69.5%. The traditional model has a minimum reduction
of only 54.3%, and the cost reduction of this model is
extremely unstable, making it difficult to estimate the
cost. The above results are summarised to more intuitively
observe the performance of SMOTE-gcForest model. The
results are shown in Table 2.

Table 2 shows that the performance of SMOTE-
gcForest power dispatching model is superior to other
methods.

4. Discussion

To test the scheduling accuracy, response time, and cost
of the proposed SMOTE-gcForest model, a comparative
experiment was conducted on the SMOTE-gcForest algo-
rithm. The comparative experiments of SMOTE-gcForest,
CNN-PSO, PCA-ResNet, and K -means-RNN showed that
SMOTE-gcForest had the highest classification accuracy
(97.7%), while the classification accuracy of the other
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Table 2
Performance Analysis of SMOTE-gcForest Model

Model SMOTE-gcForest ACO Traditional Model

Response time 1.8 s 5.7 s 9.4 s

Response accuracy 94.4% 61.9% 45.3%

Electric power variation range -59∼70 W -100∼120 W -200∼200 W

Number of instructions 2 times/h 4 times/h 6 times/h

Dispatch cost reduction 78.9% 69.5% 54.3%

three algorithms was 87.8%, 81.2%, and 76.4%. Among
the four algorithms, SMOTE-gcForest had the shortest
classification time, while Kmeans-RNN had the longest
classification time. This result was similar to Guan et
al.’s findings. The reason for this result might be that
the SMOTE algorithm had balanced the original data
reasonably, making it more rational and reducing the
overfitting of the data, thus improving the classification
accuracy of the algorithm [19]. Among the comparison
results of F1 values and loss function values of the four
algorithms, SMOTE-gcForest had the highest F1 value of
0.95, the lowest loss function value of 0.02, and the lowest
F1 value. The Kmeans-RNN algorithm had the highest loss
function value. This result was roughly similar to that of
Pradipta et al., who achieved a loss function value of 0.1
for the gcForest algorithm in their experiment. The reason
might be that Pradipta did not perform data preprocessing
during the experiment, resulting in a low F1 value of
the algorithm during the experiment [20]. The actual
application effects of PSDC strategies based on SMOTE-
gcForest, ACO, and traditional models were compared.
After using the SMOTE-gcForest strategy for scheduling,
the changes in electrical power in the power system became
more stable. The stability of the ACO-based strategy was
lower than that of SMOTE-gcForest, while the system
based on traditional models was even more unstable. This
result was similar to the conclusion of Zhang et al. [21].
When comparing the number of commands and scheduling
costs in the power system, SMOTE-gcForest reduced the
number of commands to 2 per hour, the traditional model
had 6 commands per hour, and the ACO model reduced it
to 3 commands per hour. Moreover, the SMOTE-gcForest
model could reduce scheduling costs by 78.9%. This result
is correlated with the study by Liu et al. [22].

The above results indicate that the proposed SMOTE-
gcForest model can optimise the PSDC strategy, reduce
scheduling costs, and improve the efficiency of power
scheduling.

5. Conclusion

In response to the current shortcomings of delayed
scheduling and slow scheduling speed in PSDC strategies,
this study proposed the SMOTE-cForest algorithm that
integrated SMOTE and gcForest and constructed a PSDC
model based on this algorithm. To verify the superiority

of SMOTE-gcForest, it was first compared with CNN-
PSO, PCA-ResNet, and Kmeans-RNN. In the experiment,
SMOTE-gcForest had the lowest loss function value, the
lowest error rate, and the best overall performance. In
the comparison based on research models, ACO models,
and traditional models, SMOTE-gcForest had the best
response accuracy and speed, and the lowest scheduling
cost. The above experiments indicate that the SMOTE-
gcForest model can optimise the PSDC strategy and
improve scheduling efficiency. However, the experiments in
this study were conducted under ideal conditions, and it
remains to be verified whether the model can optimiwe
power dispatch strategies in case of emergencies.
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