International Journal of Power and Energy Systems, Vol. 45, No. 10, 2025

An Open Access Paper
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OF POWER MONITORING HOST OPERATION
BASED ON FUZZY LOGIC

Meijiao Xu,* Wei Ji,* and Wei Zhang*

Abstract

To realise the comprehensive dynamic detection of the risk of
the whole process of power monitoring host operation, this study
investigates a fuzzy logic-based risk detection method for the whole
process of power monitoring host operation. The risk index design
method, based on improved hierarchical analysis, is employed to
develop threat probability and impact indices encompassing the
complete host operation process. Subsequently, a risk event sequence
clustering method utilising K-means clustering is applied to identify
the sequence of risk events covered by these indices throughout the
host operation process. According to the mined event sequences,
a risk reasoning model for the entire host operation process is
developed using a fuzzy logic-based approach, which combines
affiliation degree and fuzzy rules to deduce risks in power monitoring
and control. The risk inference model infers the risk intensity of the
event sequences, thereby completing the risk detection for the entire
host operation process. Experimental results demonstrate that this
method accurately detects intrusion risks from single and mixed
attacks throughout the power monitoring host operation process,
with a risk detection delay of only 2 s, ensuring timely detection.
In the clustering of risk event sequences, the clustering value for
sequences under the threat probability index is set to 25, while the
value of clustering the dangerous event sequences under the threat

impact index is set to 20.
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1. Introduction

With the rapid development of computer and network
technology, the development level of power system
informatisation has also improved; however, this progress
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has simultaneously introduced numerous security vulnera-
bilities. According to relevant data, in recent years, network
security management in the field of electric power has faced
persistent invasion events involving the Stuxnet virus and
Havex virus, which directly threaten the security of power
monitoring hosts [1]-[3].

The power monitoring system serves the function of
monitoring field equipment and alerting faults. If the
host computer of the power monitoring system is invaded
by a virus during operation, or if security measures are
inadequately implemented, it may lead to the abnormal
functioning of the power monitoring system, potentially
impacting the operational status of the power system.
Therefore, ensuring the security of the power monitoring
system’s host computer throughout its operational lifecycle
is a critical task for the security department. Risk detection,
an effective technique commonly employed at present, can
analyse the operational status of the host throughout its
lifecycle.

When detecting risks during the whole operation
process of the power monitoring host, effective risk
detection methods are necessary to protect the security
of the host. Currently, numerous studies focus on risk
detection for power monitoring mainframes. Based on the
research results of others, Chai et al. [4] combined K-means
clustering with a self-encoder to construct a host intrusion
detection model, which extracts data samples by clustering
host network traffic and identifies abnormal traffic through
a self-encoder. While this method demonstrates more
accurate host network intrusion detection capability, it is
limited to detecting host operation risk through network
traffic, restricting the factors that can be used to identify
the risk. Yang et. al, [5] used attack graphs to assess
host security. This method has been demonstrated to
accurately assess the importance and security value of
hosts, but the processing of attack graphs is complex.
The accuracy of host risk detection results remains to be
validated when the host is subjected to various attacks.
Current research and discussions have primarily focused on
traditional intrusion detection systems (IDS) and Intrusion
prevention systems (IPS), employing techniques such
as rule-based analysis, statistical analysis, and machine
learning. These methods are typically used to detect



malicious behaviours and security events in networks
and attempt to identify potential intrusions. However,
with the development of information technology and the
increasing complexity of network environments, traditional
intrusion detection methods face several challenges and
limitations. For example, traditional methods may not
accurately identify and categorise new intrusion methods
and unknown threats. Furthermore, large-scale network
traffic and dynamic network topologies can increase the
complexity and difficulty of detection.

In this paper, a risk detection method based on fuzzy
logic in the whole operation process of power monitoring
host is proposed, which provides effective assistance for
the safety protection of power monitoring host. In this
paper, the method designs risk indicators by improving
the hierarchical analysis method and evaluates the risk
intensity by using the risk inference model of fuzzy
logic, so as to realise the comprehensive and accurate
detection of the operation risk of power monitoring and
control mainframe. Compared with existing research, the
advantage of this method is that it not only considers the
threat probability and threat impact, but also introduces
threat intelligence information and constructs a dynamic
weight indicator system. Thus, it can more accurately
reflect the risk status of the power monitoring host and
provide effective support for security protection. The
research contribution of this paper as follows.

(1) Design Comprehensive Risk Assessment Indicators:
Improve the analytic hierarchy Process and design
threat probability indicators and threat impact
indicators that cover the entire process of host
operation. Traditional methods often only consider
the probability and impact of equipment failures,
ignoring the complexity of equipment relationships
and operational processes. The new indicators evaluate
the possibility and severity of risks from multiple
aspects such as threat mode, protection status, and
host operation status, which can more accurately
assess the operational risks of power monitoring hosts.

(2) Mining potential risk event sequences: Based on
K-means clustering algorithm, cluster analysis is
conducted on threat probability indicators and threat
impact indicators to mine potential risk event
sequences. This clustering method uses Euclidean
distance as an indicator and determines the optimal
number of clusters through contour coefficients. It can
identify event sequences with similar risk characteris-
tics, which helps to more accurately evaluate the risk
situation.

(3) Consider risk uncertainty assessment: Construct a
fuzzy logic based inference model, combined with
membership degrees and fuzzy rules, to infer the
risk intensity of risk event sequences. Traditional risk
assessment methods often use simple mathematical
models without considering the fuzziness and uncer-
tainty in the assessment process. And this model can
integrate multiple risk indicators, infer and detect risk
intensity based on fuzzy rules, and more accurately
evaluate the operational risks of power monitoring
hosts.

2. Risk Detection Method in the Whole Operation
Process of Power Monitoring Host

The fuzzy logic-based risk detection method for the whole
process of power monitoring and control mainframe oper-
ation is mainly divided into three steps: the design of risk
indicators for the whole process of power monitoring and
control mainframe operation, the clustering of the sequence
of risk events for the whole process of power monitoring and
control mainframe operation [6], and the fuzzy inference of
the risk level of the sequence of risk events.

2.1 Risk Index Design Method Based on Improved
Analytic Hierarchy Process

Threat patterns and poor protection are important factors
in assessing risk. Understanding existing threat patterns
and potential attack patterns can help to identify the
risk indicators to be used and on which to base a risk
analysis [7]. A comprehensive understanding of existing
protections and security policies is also required to identify
weaknesses and vulnerabilities in the system. The entire
operation of the power monitoring mainframe is analysed in
detail, including data flow, system components and related
processes. This helps identify possible risk points and key
risk indicators. In order to comprehensively detect various
risk factors in the whole process of power monitoring
and control mainframe operation, this paper introduces
the hierarchical analysis method, which is a complex
method of analysing indicator weights [8]. However, in the
risk detection of the whole process of power monitoring
and control mainframe operation, if some mainframe risk
detection indicators are significantly different from the
normal value, it means that the risk value of the indicator
is significant. However, the whole process of host operation
is dynamic, and if the fixed weight method is used to detect
the risk value, the dynamic risk intensity of the indicator
cannot be accurately identified [9]. Therefore, this paper
introduces the dynamic weight method to improve the
hierarchical analysis method. With the application of the
improved hierarchical analysis method, the weights of the
risk indicators in the whole process of host operation will
change with the dynamic change of the indicator values. If
the state of the risk metrics during the whole process of
host operation is abnormal, the corresponding weights will
also change abnormally [10].

Risk metrics can be constructed based on known threat
patterns and attack methods, but they may not cover
all complex attack scenarios. This is because compound
attacks may have new combinations or exploit unknown
vulnerabilities. As a result, individual risk metrics may
face inaccurate or unrecognisable detection in the face of
composite attacks. To address this problem, a composite
risk assessment approach can be considered that combines
many different risk indicators. This can increase the
coverage of attack detection and improve the detection of
complex attacks.

The operational process for the risk index design
method, based on the improved analytic hierarchy process,
is as follows.
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Figure 1. Risk indicators of the whole process of host
operation.

Utilising the expertise and empirical knowledge
of specialists in the field of power monitoring host
security protection, the risk indicators pertaining to the
comprehensive process of power monitoring host operation
are delineated, as illustrated in Fig. 1.

As shown in Fig. 1, the risk indicators for the whole
process of power monitoring and control host operation
are mainly categorised into threat probability and threat
impact. The core factors of the threat probability indicator
are threat mode, unfavourable protection and vulnerability
state. Threat mode mainly refers to the types of risks that
occur during the whole process of host operation, such as
abnormal access and vulnerability attacks. Unfavourable
protection refers to the protection state of the host,
and vulnerable state refers to the operating state of
the host under risky operating conditions. The core
factors of the threat impact indicators are mainly the
integrity, confidentiality and availability of the host, which
mainly describes whether the functionality of the host
is impaired [11], whether the information security is
threatened, and whether the host can operate normally.
The design steps of risk indicators in the whole process of
host operation are as follows.

(1) Design of Judgement Matriz: The pairwise
comparison method is adopted to compare the criticality
between the low-level influencing factors and the high-
level factors in the whole operation process of the power
monitoring host. The criticality is analysed by a nine-point
scoring method [12]. Combined with the comparison results
of each factor’s criticality, and following the standard
content shown in Table 1, the comparative relationship
between risk influencing factors in the whole process of
power monitoring host operation is transformed into the
corresponding m X m hierarchical judgement matrix B.

(2) The sum product method is introduced to
calculate the maximum characteristic root ag,.x and the
approximate value V of the maximum characteristic vector
of the criticality judgement matrix of each influencing
factor.

(3) Standardisation will be performed by using the
following formula:

bij = Qtmax Z bV’ (1)
=1

where Bij is the judgement matrix after standardisation,
bij € B, which represents the judgement matrix of the

Table 1
Contents of Nine-Point Standard

Scale | Details

1 Compared with the two influencing factors,
the key degree is consistent

3 Compared with the two influencing factors,
the first factor is slightly more critical

5 Compared with the two influencing factors,
the first factor is more critical

7 Compared with the two influencing factors,
the first factor is more critical

9 Compared with the two influencing factors,
the first factor is very critical

2,4,6,8 | Median values of scales 1, 3, 5, 7 and 9

criticality of risk influencing factors in the whole process of
host operation in line ¢ and column j in B.

(4) The critical judgement matrix of influencing factors
after standardisation is summed [13]

U= byw (2)
j=1

where w is the weight value.

(5) Calculate the approximate value of the principal
eigenvector subsequent to the standardisation of the
judgement matrix pertaining to the critical degree of
influencing factors in line ¢

v=US 3
i=1

where ¢; is the sorting weight of line .

(6) Perform consistency detection on the critical degree
judgement matrix of the influencing factors of risk in the
comprehensive process of host operation, and establish the
consistency index as DJ

Ui

DJ = — (4)

When the DJ value is close to 0, it represents significant
consistency, but the matrix dimension is large, and it
is difficult to control consistency [14]. m is dimension.
Therefore, the average consistency index DS is used to
detect the criticality of risk influencing factors throughout
the host operation process to evaluate the consistency of
the matrix, and there are

_DbJ
_m

DS (5)

If the value of DS exceeds 0.15, the consistency of
the judgement matrix of influencing factor criticality is
significant; otherwise, if it is less than 0.15, the consistency
is not significant, so it is necessary to jump to step (1) and
form a new judgement matrix again [15].



(7) Check the consistency of the total ranking of
levels: For the purpose of calculating the weight of a
certain level factor relative to the highest level, the total
ranking of levels is performed. If the number of influencing
factors in the whole process of host operation risk in B
at the upper level is n, the weight of total ranking at
the lower level is (i1,t2,...,4;), the number of factors in
C is m, and the ranking weights of B; and C; factors
are tp and ¢ in turn, the hierarchical consistency test is
carried out

Z?:l Lo X DJj

DS = ~n" . Q7
ijlLB XSJ]'

(6)

In the formula, DJ; and SJ; are the consistency
detection index and random consistency index of layer C;
factor and upper layer B; in turn.

If the value of DS is not greater than 0.15. Then the
consistency of the ranking results of influencing factors’
criticality levels is significant [16], otherwise, skip to
step (1).

(8) Build a dynamic weight index system: Setting the
initial weight of the index to which the risk influencing
factors in the whole process of host operation belong
to ¢, and establishing a dynamic weight function X
corresponding to the risk index

X =DS¢Y aB (7)

=1

where g; is the dynamic weight of the [ risk indicator and
[ is the host level protection coefficient. When the X value
is greater than 1, it indicates that the risk of the host is
high [17], and it is necessary to detect the operation of the
host in time.

2.2 Risk Event Sequence Clustering
Method—based on K-means Clustering

According to the risk index constructed in Section 2.1,
the risk event sequence of the whole operation process of
the power monitoring mainframe is extracted by using the
K-means clustering algorithm. The K-means clustering
algorithm mainly uses the Euclidean distance as an index,
and the number of clusters of the risk event sequence of
the operation of the power monitoring mainframe is set as
k .The clustering process is as follows.

(1) Randomly extracting koperation risk event
sequence samples in the whole operation process of the
power monitoring host, and setting these samples as an
initial clustering center o = (01, 09, ...., 0k);

(2) Set the operating risk event sequence set of the
power monitoring host. The ¢ risk event sequence sample
is 0;, calculate its distance from o = (01,09, ....,0x), and
classify 6; into the cluster E; to which the cluster center
with the smallest distance belongs

E; = Xargmin ||6; — o> (8)
J

In the formula, o; is the i cluster center in k risk event
sequence.

1 n
i=1

Step (2) is executed several times, and the clustering
of the risk event sequence of the power monitoring host
can be stopped when the change of the clustering center
is minimum or fixed [18], [19]. The algorithm is unable
to set the number of clusters of risk event sequences
during operation [20], so this paper introduces the profile
coeflicients based on cohesion and separation to set the
number of clusters k. First, the average distance between
the j risk event sequence target and its in-class event
sequence is ¢;, and the average distance between the j risk
event sequence target and other cluster event sequences is
;. For the j risk event sequence, its contour coeflicient is
set as [21]

r; = —Qﬁj — qu (10)
0; max (¢, ¢;)
Then the clustering contour coefficient of all risk event
sequences in the whole process of power monitoring host
operation is

1 m
= =S 11
r m;ﬁ (11)

The maximum value and minimum value of r are 1 and
0 in turn. If the value of 7 is not less than 0, the clustering
effect of risk event sequence of power monitoring host is
excellent. The closer the value of r is to 1, the smaller the
intra-class distance and the larger the inter-class distance
after clustering, and the clustering quality of risk event
sequence is remarkable. On the contrary, if the value of r
is less than 0, the clustering effect is not good [22].

2.3 Risk Reasoning Model of the Whole Process of
Host Operation Based on Fuzzy Logic

The host risk event sequence, derived through clustering in
Section 2.2, is imported into the risk reasoning model for
the comprehensive host operation process based on fuzzy
logic. Subsequently, the risk intensity of the event sequence
is evaluated using fuzzy reasoning techniques.

The structure of the risk reasoning model for the whole
process of host operation based on fuzzy logic is shown in
Fig. 2.

The model can combine the actual host risk level
requirements to comprehensively infer the risk intensity of
the whole process of power monitoring and control host
operation. As shown in Fig. 2, the model can combine
multiple risk indicators in Section 2.2 and follow fuzzy
rules to infer and detect the risk intensity of the sequence
of risk events in the whole process of host operation.

The fuzzy logic-based risk inference model for the
whole process of host operation sets the risk intensity level
to the criteria shown in Table 2 when inferring the risk
intensity.



Host risk event
sequence under
threat impact index

Host risk event
sequence under threat
probability index

Fuzzy rules

Fuzzy
reasoning

Output

Figure 2. Risk reasoning model of the whole process of
host operation based on fuzzy logic.

Table 2
Risk Intensity Levels

Risk intensity | Grade of membership
Polar altitude 0.81~1.00
Height 0.61~0.80
Moderate 0.41~0.60
Minuent 0.21~0.40
Very low 0.00~0.20

Fuzzy rules mainly use IF-THEN method to construct
the relationship between risk indicators and risk intensity,
and combine with the index membership function set by
experts to construct fuzzy rules [23]. Examples of fuzzy
rules as follows.

(1) From the threat probability and threat impact of the
risk indicators shown in Fig. 1, if the threat probability
and risk impact are acceptable, then the degree of
risk affiliation of the power monitoring and control
mainframe throughout the operation is 0.00~0.20.

(2) If the threat probability and threat impact belong to
the high-risk category, then the affiliation degree of
the risk degree in the whole operation process of the
power monitoring host is 0.61~0.80.

Threat probability cannot directly determine the risk
detection result of the whole process of host operation,
but threat impact has some influence on the risk detection
effect of the whole process of host operation, because there
are some defense measures in the whole process of host
operation, so the threat impact index is the core index
that ultimately reflects the risk of the whole process of
host operation [24]. The applicability of fuzzy logic and
K-means based detection methods as well as the clarity
of the execution process can be improved by combining
other machine learning techniques, investigating precise
risk metrics, introducing threat intelligence information,
implementing comprehensive assessment and testing, and
enhancing interpretation and visualisation. These solutions
can provide more accurate, reliable and effective detection
mechanisms to fulfill the security requirements for the
entire operation of power monitoring hosts.

3. Experimental Analysis

In order to test whether the method in this paper has the
capability of risk detection in the whole process of power
monitoring host operation, the network environment of the
power monitoring host is designed on the virtualisation
software Vmware workstation for experimentation, and
three intrusion behaviours are used to simulate the risk
problems in the whole process of host operation. The
information of intrusion behaviours is as follows.

Behaviour 1: ARP attack on the power monitoring
host through Kali Linux;

Behaviour 2: Host manipulation vulnerability attack
on Winserver;

Behaviour 3: Host DOS attack.

Behaviour 1 and Behaviour 3 require the use of Kali
Linux commands to drive arpspoof and hping3 to complete
the host intrusion; Behaviour 2 is the use of Kali Linux
commands to complete the vulnerability attack through the
vulnerability of the target Windows 10 operating system.

When using Vmware-workstation 12.0 to build the
virtual experimental environment, the virtual network
topology is divided by subnetting, and the subnet mask
is set to 255.255.255.0, which divides multiple subnets,
each of which corresponds to a different experimental
equipment role. The subnet where the power monitoring
host is located, the subnet where the attack source is
located, and so on. The virtual host hardware parameters
are configured to allocate 2 CPU cores, 4 GB of RAM, and
20 GB of hard disk space for the power monitoring host.
For the Kali-Linux 2021.2 simulated attack behaviour,
the network attack tool that comes with it is used to
realise the attack function through a specific combination
of command line parameters. The Windows 10 operating
system (version 1803 - 17134.191) is used as the operating
system of the power monitoring host in the experiments,
and the network parameters are configured as the static
IP address 192.168. 1.100, subnet mask 255.255.255.0,
default gateway 192.168.1.1, and necessary services are
enabled to simulate the actual operating environment.
Set the capture filter to capture only the network
protocol packets related to the experiment, such as ARP,
TCP, UDP, etc. Use data cleaning technology to remove
duplicate and wrong packets, and extract key features
such as source IP, destination IP, port number, protocol
type, etc., of the packets through feature extraction
algorithm.

Table 3 shows the details of the software used in the
experiment and the simulation behaviour.

Based on the set experimental environment, taking
Behaviour 1 as an example and incorporating the risk index
for the comprehensive power monitoring host operation
process delineated in Fig. 1, the method in this paper
demonstrates significant importance in mining the risk
event sequence of the whole process of power monitoring
system host operation. Figure 3 shows the clustering
effect of the risk event sequence in the whole process of
host operation under different clustering conditions, with
the clustering effectiveness primarily quantified by the
silhouette coefficient.



Table 3

Details of Software and Simulation Behaviour Used in the Experiment

Software type Version

Function

Virtualisation software 12.0
Vmware-workstation

Design the virtual
experimental environment
of power monitoring host

kali-Linux software 2021.2 Simulate attack behaviour

Windows 10 operating 1803-17134.191 Operating system

system

Windows 10 Physical Memory 8G, clocked | Code writing, resource

machine at 3.0GHZ allocation

Wireshark 3.6.6.0 Data parsing

Adobe Reader 4.0 Vulnerability management
L 10 the k value of the risk event sequence cluster under the
§ 0.8 threat impact index is set to 20.
g After clustering the risk event sequence of the whole
g 0.6 operation process of the power monitoring system, this
2 o4 method employs a risk inference model based on fuzzy
g logic to assess the risk intensity of the aforementioned

0.2 sequences. The detection result fed back by this method in
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Contour coefficient
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Figure 3. Relationship between cluster of risk event
sequence and contour coefficient: (a) Mining effect of risk
event sequence under threat probability index and (b)
Mining effect of risk event sequence under threat impact
index.

Figure 3 illustrates the relationship between the cluster
number k£ and the contour coefficient of the risk event
sequence, represented on the horizontal and vertical axes,
respectively. A larger contour coefficient indicates a more
significant clustering effect of the risk event sequence for
a given k value. In the category of risk index-threat
probability, the contour coefficient reaches its maximum
when k equals 25 after clustering the risk event sequence.
In the category of risk index-threat impact, the contour
coefficient attains its peak when k equals 20 after clustering
the risk event sequence. Consequently, when clustering the
risk event sequence, the k value of the risk event sequence
cluster under the threat probability index is set to 25, and

the virtualisation software Vmware-workstation is shown
in Fig. 4.

As shown in Fig. 4, after the method of this paper
detects the risk intensity of the whole process of power
monitoring host operation, the detection results show that
the risk intensity of the whole process of host operation
is moderate, which is mainly reflected in the following
factors: threat mode, unfavourable protection, vulnerable
state, host integrity, confidentiality and availability. The
risk intensity affiliation of the host risk event sequence is
0.10, 0.05, 0.10, 0.05 and 0.10, respectively.

Under the attack of behaviour 1, experimental
conditions of different risk intensities are simulated. The
detection accuracy of the method in this paper is analysed
when it detects the whole process risk of host operation for
many times. The results are shown in Fig. 5.

As shown in Fig. 5, the method presented in this
paper demonstrates a high degree of correlation between
the detected risk and the actual risk intensity in the
power monitoring system host operation process. The
detection results exhibit a positive linear correlation trend
and consistently exceed the reference line, indicating that
this method is effective for risk detection in the power
monitoring host operation process.

The specifics of risk intensity over time are recorded
for ARP attacks, host manipulation vulnerability attacks,
host DOS attacks, and hybrid attacks, respectively. The
graph visually compares how the risk intensity evolves
over time under different attack scenarios, and verifies the
capability of this paper’s approach in real-time monitoring
and risk assessment. The graph of risk intensity over time
under different attack behaviours is shown in Fig. 6.

From Fig. 6, it can be seen that the risk intensity
increases with time under different attack behaviours. At
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the initial moment, the risk intensity of all types of attacks
is low and similar. As time passes, the risk intensity of
hybrid attacks increases most significantly and reaches a
high level at 7 s. The risk intensities of ARP attacks, host
manipulation vulnerability attacks, and host DOS attacks
also increase gradually, but the growth rate and speed
are relatively small compared to that of hybrid attacks.
This shows that the method can effectively monitor the
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Table 4
Detection Effect of Mixed Attack Behaviour

Types and time of attack | Detection results and
behaviour detection time of this
method

Behaviour 1 + Behaviour 2: | ARP attack + vulnerability
October 5, 2021 09: 45: 00 | attack Winserver: October
5, 2021 09:44:58

Behaviour 1 + Behaviour | ARP attack + DOS attack:
3: October 5, 2021 09:50:00 | October 5, 2021 09:49:58

Behaviour 2 + Behaviour | Vulnerability attack
3: October 5, 2021 09:55:00 | Winserver + DOS attack:
October 5, 2021 09:54:58

change of risk intensity under different attack behaviours
in real time, and verifies that the impact of multiple attack
behaviours on the risk of host operation is dynamically
intensified.

To evaluate the efficacy of this method in detecting
mixed attacks, a test was conducted during the setup of the
power monitoring host, wherein multiple types of attacks
occurred simultaneously. The results of this evaluation are
presented in Table 4.

As shown in the test results in Table 4, the risk
detection results of mixed attack behaviour within the
same time period throughout the power monitoring host
operation process using this method align with the actual
situation, exhibiting high detection accuracy, precise risk
intensity detection results, and notable real-time detection
capabilities. When risk behaviour appears for 2 s, this
method can complete the risk detection across the whole
process of power monitoring host operation.

To further verify the effectiveness of the proposed
method, a comparison is conducted using known data



Table 5
Comparison of False Alarm Rates of Different Detection

Methods
Number | Textual | Unsupervised host | Host security
of itera- | method | intrusion detection evaluation
tions % method based on | method based
EKM-AE model % | on attack graph
%
10 6.42 16.62 14.98
20 6.35 14.25 16.26
30 5.42 17.42 13.64
40 4.15 19.36 14.55
50 3.47 17.15 13.64
60 3.15 16.26 17.46
Table 6
Performance Comparison Results of Different Detection
Methods
Experimental Textual Traditional fuzzy
indicators method | logic approach model
F1 score 0.92 0.85
AUC 0.95 0.89
Kappa coefficient 0.88 0.79

sets between the proposed method, the unsupervised host
intrusion detection method based on the EKM-AE model,
and the host security assessment method based on attack
graph. The test index is false alarm detection rate, and the
specific comparison results are shown in Table 5.

As demonstrated in Table 5, the minimum false alarm
detection rate of the proposed method is 3.15%, whereas
the lowest false alarm detection rate of the unsupervised
host intrusion detection method based on EKM-AE model
and the lowest false alarm detection rate of the host security
assessment method based on attack graph are 14.25% and
13.64%. Compared with the two literatures, the false alarm
detection rate of the proposed method is lower.

Evaluate the performance of the risk detection method
proposed in this paper compared to existing fuzzy logic
methods in terms of F1 score, AUC, and Kappa coefficient.
Through comparative experiments, verify the effectiveness
and advantages of the proposed method in detecting
operational risks of power monitoring hosts. The specific
comparison results are shown in Table 6.

According to the comparison results in Table 6, the
risk detection method proposed in this paper outperforms
the traditional fuzzy logic method in three key performance
indicators: F1 score, AUC, and Kappa coefficient. The F1
score of the method is as high as 0.92, which is a very
high classification accuracy; the AUC value is 0.95, which
indicates that it has a good model recognition ability;
and the Kappa coefficient is 0.88, which indicates that

the detection results have a high consistency with the
actual situation. In summary, the risk detection method
proposed in this paper has good performance in detecting
the operational risk of power monitoring hosts and has
significant effectiveness and advantages.

4. Result and Discussion

In this paper, the whole process risk detection of power
monitoring host based on fuzzy logic is proposed and the
following conclusions are drawn as follows.

1) When clustering the sequence of risk events, the value
of clustering the sequence of risk events under the
threat probability index is set to 25, and the value of
clustering the sequence of dangerous events under the
threat impact index is set to 20.

2) The risk intensity of the whole host operation process
is moderate, which is mainly reflected in the threat
mode, unfavourable protection, vulnerable state, host
integrity, confidentiality and availability. The risk
intensity affiliation of major risk events are 0.10, 0.05,
0.10, 0.05 and 0.10, respectively.

3) After detecting the risk in the whole operation process
of the power monitoring host, the detection results are
highly matched with the actual risk intensity, and there
is a linear positive correlation trend, and the detection
results are above the reference line, which indicates
that the method in this paper can be used for the risk
detection task in the whole operation process of the
power monitoring host.

When the risky behaviour appears for 2 s, the method
can complete the risk detection of the whole operation
process of the power monitoring host.

5. Conclusion

The problem of risk detection in the whole process of
power monitoring host represents a critical challenge
that requires urgent resolution in the current safety
management of power monitoring systems. This study
proposes a risk detection method for the comprehensive
operational process of power monitoring hosts based on
fuzzy logic, with the aim of accurately and efficiently
identifying risks during host operation. The efficacy of
this method is evaluated through virtual simulation. The
experimental results show that when clustering risk event
sequences, setting the clustering value of the risk event
sequence under the threat probability index to 25 and the
value of the threat impact index to 20 yields the best
clustering effect. This method detects a moderate level of
risk throughout the entire process of host operation, mainly
reflected in threat modes, adverse protection, fragile states,
as well as the integrity, confidentiality, and availability
of the host. The risk intensity membership degrees of
each major risk event are 0.10, 0.05, 0.10, 0.05, 0.10,
and 0.10, respectively. The detection results are highly
matched with the actual risk intensity, showing a linear
positive correlation and located above the reference line.
The detection can be completed within 2 s of the occurrence
of risk behaviour. The detection results for mixed attack



behaviour also conform to the actual situation, indicating
that this method can be used for risk detection tasks
throughout the operation of power monitoring hosts.
Because the reasoning and judgement involved in fuzzy
logic are fuzzy, the results may be affected by the setting
of key parameters and professional knowledge, resulting in
a degree of uncertainty. In the complex and ever-changing
power monitoring environment, subtle adjustments to key
parameters or differences in understanding of knowledge
among different professionals may cause changes in risk
detection results, thereby affecting the accurate assessment
and effective response to operational risks of power
monitoring hosts. In future development, the integration
of deep learning and machine learning technologies may
enhance the system’s capacity to analyse and interpret
complex power monitoring data, potentially improving the
accuray and robustness of risk detection mechanisms.
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