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THREE-STATE ENERGY VOLTAGE

REGULATION MODEL APPLIED

TO SMART GRID

Jingmei Wu∗

Abstract

Based on various intelligent technologies, smart grids can effectively

ensure voltage stability, achieve large-scale and cross regional power

dispatching, and make power resource allocation more reasonable.

However, with the continuous integration of various emerging energy

sources, the voltage regulation in smart grids faces more complex

and ever-changing external environments. The stability control of

voltage regulation is challenged. To enhance voltage regulation in

smart grids, this study proposes a model based on the three-state

energy (TSE) structure. A Markov game (MG) model is introduced

to perform regional calculations on the smart grid. A distributed

calculation method for voltage regulation in the smart grid is

constructed. The experimental results showed that the IAE, ISE,

ITAE, ITMSE, ISTAE, and ISTSE of the voltage regulation method

were 0.0051, 0.0056, 0.027, 0.0024, 5.57, and 0.00468, respectively.

All error integration criteria are lower than other commonly used

voltage regulation methods. The research results have important

reference significance for effectively implementing voltage control in

smart grids, optimising voltage control methods, and improving the

stability and reliability of power supply.
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1. Introduction

The smart grid is based on advanced sensors and con-
trollers. Power system monitoring and data analysis help
to accurately regulate voltage, maintain system voltage
stability, ensure power supply, and coordinate distribution
[1]–[3]. With the continuous promotion of various clean
energy sources, distributed renewable energy is widely
used in distribution networks, which also exacerbates
the voltage instability problem in intelligent distribution
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networks. The compensation state of smart grid includes
three types of reactive power compensation states, reactive
power generation, reactive power absorption, and shutdown
state, which are the three-state energy (TSE) structure
[4]. Traditional voltage regulation techniques include
transformer voltage regulation, capacitive compensation,
and reactive power control, which can ensure voltage
stability [5], [6]. However, faced complex smart grid
systems, these regulation effects are limited, and may
even lead to unpredictable behaviour of voltage regulation
equipment. Therefore, the study aims to address the
intermittency of distributed energy sources and the
dynamic changes in voltage in smart grids, dynamically
control the smart grid voltage, and improve voltage
control accuracy. Based on the TSE structure, a Markov
game (MG) model is introduced to regulate and control
the voltage in the smart grid. Meanwhile, the study
introduces Attention Mechanism (AM) to optimise. A
MG-AM model is constructed to optimise the operational
stability of the smart grid, improve power quality,
and reduce energy consumption. The innovation of the
research is as follows. MG provides the optimal decision-
making framework in dynamic environments, while AM
optimises the decision-making process by focusing on key
information. The combination of the two enables the
control system to generate optimal control strategies more
efficiently in complex environments, significantly improving
the system’s dynamic response capability, optimising the
control strategy, and enhancing robustness.

The contributions of this study are as follows. First,
this study constructs a voltage regulation model based
on MG and introduced AM to optimise the regulation
process. Based on the designed MG-AM voltage regulation
control model, the operation of smart grid has been further
optimised, the stability of voltage has been enhanced,
the power quality has been further improved, and energy
consumption has been reduced.

The main challenge that this study attempts to address
is the uncertainty of the power grid and the efficiency of
multi-agent collaborative control. In the smart grid, the
intermittency of distributed energy, load fluctuations, and
equipment failures can all lead to frequent voltage changes.
Therefore, an MG model is introduced to partition the
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smart grid for calculation, thereby achieving distributed
voltage calculation in the smart grid and effectively
optimising voltage stability.

The study consists of four parts. The first part
summarises the research status of voltage regulation and
MG both domestically and internationally. The second
part first conducts zoning calculations on the smart grid
and then designs a voltage regulation method based on
MG theory. The third part conducts experimental analysis
on the proposed method. The fourth part summarises the
research content and proposes future research directions.

2. Related Works

Voltage regulation is one of the important means to
ensure the stable, safe, and economical operation of the
power system. Scholars have conducted in-depth research
on voltage regulation methods. Liu et al. developed a
fully decentralised dual loop energy trading mechanism
with voltage regulation capability. Energy production
consumers iteratively achieved optimal energy transactions
through multi-bilateral negotiations without considering
network constraints. The effectiveness and efficiency of the
proposed solution were verified through multiple cases [7].
Giacomuzzi et al. introduced a medium voltage power grid
based on intelligent transformers, which supported the
medium voltage power grid through active power control
in the low-voltage power grid powered by intelligent trans-
formers. Compared with similar solutions, the research
method improved reactive power compensation [8]. Yadav
et al. discussed the system reliability performance of the
restructured power system. Peak load capacity (PLCC)
could be observed when the generator set was unavailable
and new generator sets were added to the system. The
impact of generator maintenance was also observed in
terms of risk level and reliability performance [9].Mahajan
et al. proposed a transmission line model to simulate the
propagation characteristics of transmission line switches as
the load changes. The synchronous phasor measurement
device exhibited anomalies due to information intrusion
or equipment failure in the communication network,
making the system observable and characterising the
fragile behaviour of transmission lines [10]. Paniagua et
al. proposed a new integrated circuit control strategy
called Dual Inertia Simulation. This strategy improved
the dynamic response of the connected power grid by
simulating the inertia on both sides of the converter. The
results indicated that it increased the equivalent inertia
response [11].

MG is a statistical model extensively applied in natural
language processing fields such as phonetic conversion,
probabilistic grammar, part of speech automatic labeling,
etc. Frimane et al. [12] introduced an infinite hidden MG
for short-term probability prediction of solar irradiance.
It could automatically adapt to the complexity of
“correction.” The results showed that the prediction range
had higher consistency. Abraham et al. investigated the
boundary between learnable and non-learnable hidden
Markov model (HMM). The known model parameters
were fully recognisable without making any modelling

assumptions about the distribution of the population. As
long as the clusters were different, the hidden chain was
a traversal chain with a full rank transition matrix[13].
Flandoli et al. proposed a virus diffusion model based on
Markov chain individuals. This model effectively captured
the statistical variability in Tuscany [14]. The comparison
of relevant studies is shown in Table 1.

In summary, voltage regulation in smart grids can
effectively achieve stable operation of power equipment,
but there are also shortcomings in these studies.
Specifically, the voltage regulation method proposed by
Liu et al. can achieve better energy trading, but it
does not take into account specific constraints such as
network constraints. The medium voltage power grid
distribution method proposed by Giacomozzi et al. lacks
sufficient consideration for large-scale energy deployment
environments. The integrated circuit control strategy
proposed by Paniagua et al. has not been further validated
for its scalability. Overall, there are shortcomings in the
voltage regulation of smart grids at present. Most studies
adopt centralised voltage control methods, which are
difficult to be well applied in large-scale distributed energy
smart grids. Therefore, the MG model is taken for voltage
optimisation control in smart grids. It is expected to
further optimise the voltage regulation and achieve stable
operation of power equipment.

3. Construction of a TSE Voltage Regulation
Model-based on MG-AM

To better achieve voltage regulation control in smart
grids, an MG is adopted to optimise voltage regulation
control in smart grids based on existing voltage regulation
models. A parallel voltage control method for smart grids
is constructed by performing regional calculations.

3.1 Construction of Voltage Regulation Problem
Based on TSE Structure

With the continuous integration of distributed energy
into smart grids, the difficulty of voltage stability control
is gradually increasing. The compensation states of
flexible loads and traditional reactive power compensation
connected to the smart grid include reactive power
generation, reactive power absorption, and shutdown
states. If the above three reactive power compensation
states are met, it is a TSE structure. This structure
can regulate flexible loads, reduce the operating time of
reactive power compensation equipment in smart grid
voltage control engineering, and thus extend the service life
of the equipment [15]. These three types of compensation
states all have impacts on the voltage. The basic structure
is shown in Fig. 1.

In Fig. 1, when the TSE unit is in a reactive
state, the energy structure provides reactive power to
the smart grid. When it is in a state of absorbing
reactive power, it simultaneously absorbs the reactive
power of the smart grid. When the energy structure is
in a shutdown state, there is no interaction between the
TSE structure and the smart grid. At this time, the
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Table 1
The Comparison of Relevant Studies

Reference Method/Content Advantages Disadvantages

Liu et al. [7] A fully decentralised dual loop
energy trading mechanism

Achieved optimal energy
transactions

It does not take into account
specific constraints such as
network constraints.

Giacomuzzi et a.l [8] A medium voltage power grid
based on intelligent transformers

Improved reactive power
compensation

Lack sufficient consideration
for large-scale energy
deployment environments.

Yadav et al. [9] Discussed the system reliability
performance of the restructured
power system.

Risk level and reliability can be
observed

/

Mahajan et al. [10] A transmission line model to
simulate the propagation
characteristics

Make the system observable and
characterise the fragile behaviour
of transmission lines

/

Paniagua et al. [11] A new integrated circuit control
strategy called Dual Inertia
Simulation

Improved the dynamic response The scalability has not been
further validated

Frimane et al.[12] Introduced an infinite hidden
MG for short-term probability
prediction

High consistency Higher computational
complexity

Abraham et al.[13] Investigated the boundary
between learnable and non
learnable HMM

Model parameters were fully
recognisable

High computational load

Flandoli et al. [14] A virus diffusion model based on
Markov chain individuals

Effectively captured the
statistical variability in Tuscany

The applicability in different
scenarios has not been verified

Figure 1. Schematic diagram of voltage regulation for TSE sources; (a) Power regulation and (b) Three state energy structure.

voltage of the smart grid remains unchanged [16]. In an
intelligent distribution network, an environment containing
D photovoltaic inverters is represented as N(m, r), r
represents the node set of the photovoltaic inverter and m
represents the set of all nodes. At time t, the safe voltage
range of node h is shown in (1)

Vmin ≤ Vh,t ≤ Vmax, h ∈ m (1)

In (1), V represents the voltage. Vmin and Vmax

represent the safe upper and lower limits of the voltage.
While ensuring voltage safety, the active and reactive power
constraints of all photovoltaic inverters are shown in (2)

(P ai,t)
2 + (P ua

i,t )2 ≤ S2
i , i ∈ r. (2)

In (2), P ai,t represents the active power that has not
been adjusted, P ua

i,t represents the unadjusted reactive
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power and S2
i represents the actual power. The power flow

balance of each node i is shown in (3)

P ai,t − P load
i,t = Vi,t

∑m
h=1 Vh,t(Gi,h,t cos θi,h,t

+Bi,h,t sin θi,h,t)

P ua
i,t − P ′

load
i,t = Vi,t

∑m
h=1 Vh,t(Gi,h,t sin θi,h,t

+Bi,h,t cos θi,h,t)

. (3)

In (3), P load
i,t and P

′load
i,t represent the uncontrollable

active and reactive power of node i at time t. Bi,h,t and
Gi,h,t are real and imaginary numbers between node i and
node h. In uncertain environments, the voltage regulation
problem of smart grids is shown in (4)

Ques1 = Θ

{
T∑
t=1

N∑
i=1

|∆Deviation|

}
(4)

In (4), Θ represents the expected factor for system
parameters such as photovoltaic power generation, load
demand, and possible stochastic decisions, ∆Deviation

represents the voltage deviation and Ques1 represents
an optimisation problem. Based on the above process, a
mathematical model for voltage regulation in smart grids
is obtained.

3.2 Construction of Voltage Regulation
Model–based on MG

Based on the established mathematical model of voltage
regulation, the voltage is regulated. The traditional voltage
control methods often adopt centralised voltage control
methods, which are difficult to be well applied in large-scale
energy distributed smart grids. Therefore, an MG model is
introduced to solve the target problem. In MG, each agent
can take different actions at every moment, which can affect
the benefits and state transitions of other agents [17]. The
photovoltaic inverter is simulated as an intelligent agent.
The distribution network is an environment for exchanging
with intelligent agents. The voltage control problem of
photovoltaic inverters is simulated as a MG with N agents,
as shown in Fig. 2.

First, partition calculation is performed on the
intelligent distribution network. The Jacobian matrix is
obtained using power flow calculation, as shown in (5)∆P

∆Q

 =

APδ BPU

CQδ DQU

∆δ

∆U

 (5)

In (5), ∆P and ∆Q refer to the changes in active
and reactive power connected by the node. ∆U and ∆δ
represent the changes in voltage amplitude and phase angle
at the node, respectively. APδ and BPU both represent the
relationship between the changes in active and reactive
power connected to the node and the voltage amplitude of
the node. CQδ and DQU represent the relationship between
the changes in active and reactive power connected at
the node and the changes in phase angle. After matrix

Figure 2. Basic schematic diagram of MG model.

transformation, it is shown in (6)∆δ

∆U

 =

SPδ SQδ

SPU SQU

∆P

∆Q

 . (6)

In (6), SPδ represents the impact of unit quantity of
active power input on the phase angle of node voltage,
SQδ represents the impact of reactive power input on
the phase angle of node voltage. SPU and SQU represent
the impact of active and reactive power on the voltage
amplitude at the node. Voltage regulation is completed
by adjusting the reactive power of photovoltaic inverters
and reactive power compensators. The study adopts
spectral clustering method to achieve distribution network
partitioning calculation. The fully connected method is
used to construct the adjacency matrix Z. The element in
row x and column y is shown in (7)

Zx,y =

N∑
x=1,y=1

exp(
−‖fx − fy‖2

2σ2
) (7)

In (7), fx represents the x-th element of the matrix
and σ is the coefficient that controls the adjacency matrix.
Then, it is transformed into a clustering problem, with the
objective function shown in (8)

G(T1, T2, ..., Tk) =
1

2

k∑
x=1

∑
a∈Tk,b∈Tk

vol(Tk) (8)

In (8), k represents the number of clusters, Tr
represents the r-th cluster in the clustering results, T r
represents the complement of Tr and vol(Tr) represents
the weighted sum of all edges. The distribution network is
divided into multiple sub networks, as shown in Fig. 3.

Based on the partition results, the voltage optimisation
regulation is transformed into multiple sub problems solved
in parallel. The voltage collaborative control problem
is constructed as an MG, where each sub network is
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Figure 3. Intelligent distribution network division.

an agent. At different time points, each agent makes
scheduling decisions based on the corresponding sub
network information [18]. At time t, N j

t is the local
observation information of the sub network of agent j in the
agent set N . All agent actions are included in action set A.
The action ajt of agent j is a controllable device scheduling
instruction for the sub network. rjt ∈ Rt represents the
immediate reward received by agent j after executing the
action, as displayed in (9) [19]

rjt = −
∑
i∈N
|Vi,t − V0|+ β. (9)

In (9),
∑
i∈N |Vi,t − V0| represents the voltage offset of

all nodes and β represents the penalty term when the node
voltage exceeds the limit. At time t, the agent j makes
a scheduling decision ajt based on the local information
N j
t of the sub network. After all agents have executed

the scheduling decision, they receive a reward value rt.
Then, the system enters the next state. In MG, each agent
maximises the cumulative discount reward by giving a
scheduling instruction ajt . To solve the MG model, each
sub network obtained is defined as a double delay deep
deterministic agent. Each intelligent agent is composed of
an action function and an evaluation function. The input
of the action function is the local observation information
N j
t of the corresponding sub network of the intelligent

agent. The output data is the scheduling instruction ajt
for controllable devices within the sub network, as shown
in (10)

ajt = pj(s
j
t ). (10)

In (10), pj(·) represents the action function of the fitted
agent j. The input of the evaluation function is the global
information (St, At). The output of the evaluation function
is a scalar indicating the action value of the agent in the
current state. The action function and evaluation function
complement each other, as shown in (11) [20]

Qj(St, At) = gj(St, At). (11)

In (11), gj(·) represents the evaluation function of the
fitted intelligent agent j, Qj(·) represents the evaluation
function and At represents the action of all intelligent

agents. In the provided equations, first, the voltage
changes in the smart grid are represented by mathematical
symbols, thus using mathematical equations to represent
the entire change process. Then, the agent relationships
in the MG model are represented and calculated using
mathematical symbols. Therefore, the calculation process
can be completed.

MG divides the power grid into multiple control
zones, each of which is treated as an intelligent agent.
Intelligent agents make independent decisions based on
local observation results, such as node voltage, while
coordinating global goals through game mechanisms, such
as reducing network losses and stabilising voltage. MG
obtains voltage uncertainty changes through the state
transition probability matrix to adapt to real-time voltage
changes and complete voltage prediction.

3.3 Construction of Voltage Regulation
Model–based on Improved MG

To ensure the control effect of multiple agents in a
certain scene, AM is introduced to optimise its control
to ensure that the agents concentrate their “attention”
on information related to their own reward values during
training, ensuring the control effect [21]. In an MG with
N agents, the parameter set to be optimised is represented
as θ = {θ1, θ2, ..., θN}. For the agent j, the parameter to

be optimised is represented as θj =
{
θµj , θµ

′
j , θQj , θQ

′
j

}
.

θµj and θµ
′
j represents the action network and target

action network of agent j, respectively. θQj and θQ
′
j

represents the parameters of the attention network and the
target attention network, respectively. The implementation
process of voltage regulation control using MG improved
by AM is shown in Fig. 4.

Based on the above calculation, a TSE voltage
regulation model is established to perform distributed
voltage control on the smart grid. The entire smart
grid system is divided into W sub regions, each with a
central bus reflecting the voltage of that region. Then,
the optimisation control is achieved through regional
autonomous control and coordinated control between

5



Figure 4. Implementation process of voltage regulation control based on MG optimised by AM.

Figure 5. Distributed voltage control for smart grid.

different regions. The basic framework is displayed in
Fig. 5.

In this voltage control framework, the voltage control
of each region can be regarded as an intelligent agent.
All intelligent agents learn the optimal action strategy
within this control region. After completing training, the
intelligent agents execute the optimal action based on
the obtained information. If an intelligent agent in a
certain area is unable to effectively handle reactive power
redundancy, adjacent intelligent agents can achieve reactive
power absorption or provision for that area through
regional connections.

4. Performance Analysis of TSE Voltage
Regulation Model–based on MG

To verify the actual effectiveness of the proposed method,
corresponding experiments are designed to analyse. Then,
the method is specifically applied to the voltage state
analysis of a day in a certain place to verify the actual
application effect.

4.1 Performance Analysis of Voltage Regulation
Model

To verify the performance, experimental analysis is
conducted by collecting actual 300 days of photovoltaic
power generation data from a certain location in a year.
The training set consists of 280 days and the test set
has 20 days. The maximum deviation of node voltage is
±5%. A total of 50 units are arranged. The performance
analysis is conducted in an IEEE33 node system. The
experimental environment is as follows. The processing
system is Windows 10, the processor is Intel Core i5-
10210U, the main frequency is 1.60 GHz, and the memory
is 16 GB. The simulation experiment is completed in
MATLAB2020b. First, the average voltage offset under
different partition numbers is analysed in the test set. The
designed method is compared with stochastic programming
and centralised control methods. Table 2 displays the
results. The maximum, minimum, and average voltage
offsets of the MG-AM method were all relatively low. Under
different numbers of partitions, the voltage offset of the
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Table 2
Voltage Offset Under Different Partition Quantities

Number of partitions MG-AM Stochastic programming Centralised control

Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average

2 2.28% 0.03% 0.15% 5.34% 1.02% 0.19% 2.66% 0.34% 0.16%

3 1.75% 0.01% 0.14% 4.37% 0.95% 0.19% 3.12% 0.56% 0.17%

4 2.03% 0.01% 0.15% 4.98% 0.98% 0.20% 2.98% 0.28% 0.16%

5 1.15% 0.02% 0.13% 3.85% 0.56% 0.22% 4.06% 0.95% 0.20%

6 1.49% 0.01% 0.13% 3.67% 0.94% 0.20% 3.57% 0.41% 0.16%

Figure 6. AOV under different control strategies.

method used in the study was lower than that of stochastic
programming and centralised control methods. As the
number of partitions increased, the maximum, minimum,
and average values of the MG-AM model overall showed
a downward trend. The maximum and minimum values of
the stochastic programming method showed a downward
trend, while the mean slightly increased. The voltage offset
of centralised control fluctuated up and down. Overall, the
study selected 5 partition numbers for the study.

The designed method is compared with the commonly
used methods, including proportional-integral-derivative
(PID) voltage control method, deep neural network (DNN)
voltage control method, and random programming method
(RP). First, the average output voltage (AOV) is used
to measure the voltage output status of each unit, which
represents the AOV of the TSE unit. The AOV of the four
methods during a certain period of time is shown in Fig. 6.
The differences among several methods were significant
within 30–35 s. The RP method had the largest deviation
from the normal value, which was 0.0016. The PID had a
deviation from the normal value of 0.0013, the DNN was
0.0005, and the MG-AM was 0.0003. Therefore, the AOV
value of the MG-AM is the reference value, with relatively
better performance.

The mean absolute error (MAE) of the three methods
is shown in Fig. 7. The MAE value had significant

Figure 7. Average absolute error of output voltage.

differences in different units. Specifically, the MAE of the
RP appeared in -4.8 × 10−4 – 5.9 × 10-4. The PID was
within -3.1 × 10−4 – 4.4 × 10-4, and the DNN was in the
-3.3 × 10−4 – 3.5 × 10-4. The MG-AM method was within
the range of -0.8 × 10−4 – 1.2 × 10-4. The error value of
all units is the smallest, indicating that the voltage control
effect obtained by designed method is better.

The error integration criterion is commonly used
to analyse control performance, which includes six sub
criteria, namely the integral absolute error (IAE), the
integral squared error (ISE), integral time multiple
absolute error (ITAE), Integral Time Multiple Square
Error (ITMSE), Integral Squared Time Absolute Error
(ISTAE), and Integral Squared Time Squared Error
(ISTSE). The above criteria are used to analyse the
research method. The error integral criterion analysis
results obtained are shown in Fig. 8. In Fig. 8(a), the IAE
values for RP, PID, and DNN were 0.0076, 0.0064, and
0.0054, and MG-AM was 0.0051. In Fig. 8(b), the ISE
values for RP, PID, and DNN, and MG-AM were 0.0069,
0.0068, 0.0062, and 0.0056, respectively. In Fig. 8(c), the
ITAE values for RP, PID, DNN and MG-AM were 0.046,
0.038, 0.029, and 0.027, respectively. In Fig. 8(d), the IAE
values for RP, PID, DNN, and MG-AM were 0.00244,
0.00223, 0.00211, and 0.00204, respectively. In Fig. 8(e),
the IAE values for RP, PID, and DNN, and MG-AM were
8.21, 7.99, 5.92, and 5.13, respectively. In Fig. 8(f), the
IAE values for RP, PID, DNN, and MG-AM were 0.00489,
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Figure 8. Comparison of error integration criteria: (a) IAE; (b) ISE; (c) ITAE; (d) ITMSE; (e) ISTAE; and (f) ISTSE.

0.00485, 0.00476, and 0.00463, respectively. The error
integral criterion results of the designed control method are
lower than those of other commonly used voltage regulation
methods.

4.2 Application Effect Analysis of MG-AM Model

To further analyse the reliability, a day with sufficient
lighting in a certain southern area is selected for analysis.
Meanwhile, the node system is transformed to further
verify the potential impact of the node system on the
control method. The voltage distribution on the same day
under different control strategies is shown in Fig. 9. The
voltage distribution controlled by the RP fluctuated the
most throughout the day, followed by the PID. The voltage
distribution under the DNN and MG-AM methods was
relatively stable and concentrated. However, the voltage
controlled by the DNN was relatively low, with a significant
deviation from the normal value of 1.00 p.u. Therefore,
the voltage distribution controlled by MG-AM is relatively
stable and concentrated, and tends towards the reference
value of 1.00 p.u. Therefore, its performance is superior to
other methods.

The output voltage effects obtained under different
control methods are shown in Fig. 10. In Fig. 10(a), in
the IEEE33 node system, the proposed MG-AM method
had the smallest output voltage fluctuation, with a range
of [0.98–1.02]. The output voltage fluctuation ranges of
RP, PID, and DNN were [1.00–1.08], [0.88–1.06], and
[0.94–1.02], respectively. PID had the largest fluctuation
range and the output voltage was the most unstable. In
Fig. 10(b), the output voltage fluctuation ranges of RP,

Figure 9. Voltage distribution under different control
strategies.

PID, and DNN were [1.00–1.12], [0.94–1.02], and [0.97–
1.02], respectively. The output voltage fluctuation range
of MG-AM was [0.99–1.03]. The fluctuation trend of RP
was the most significant. Overall, the proposed method
has the most stable output voltage, which can effectively
achieve voltage stability regulation in smart grids, ensuring
effective voltage output.

The energy utilisation efficiency in the power grid
is analysed. Figure 11 displays the results. After the
end of the day, there was a significant difference in the
cumulative energy utilisation efficiency under different
methods. Specifically, the cumulative energy utilisation
efficiency based on RP method was 0.38, while the
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Figure 10. Voltage distribution at the same node: (a) IEEE 33 and (b) IEEE 123.

Figure 11. Energy saving efficiency under different power
grid dispatch scenarios.

cumulative energy utilisation efficiency based on PID
and DNN voltage regulation was 0.43 and 0.66. The
cumulative energy utilisation efficiency of the research
method was 0.83. The designed voltage regulation method
can effectively improve energy utilisation efficiency and
reduce energy waste in smart grids.

To validate the research results, the t-test is conducted,
as shown in Table 3. Although the p-value of the
comparison method indicator was significant, it was
significantly lower than that of the research method.
The research method had more significant significance.
After comprehensive verification, this research method
performed the best among various comparison methods,
verifying its practicality and effectiveness in voltage
regulation.

The improvement of this research method on existing
voltage regulation technology is mainly reflected in
multiple dimensions such as theoretical basis, response
speed, and robustness, as shown in Table 4. Overall,
the research method has more significant performance

advantages and can better adapt to the dynamic changes
in voltage, ensuring the operational efficiency and stability
of the smart grid.

5. Conclusion

In the smart grid, voltage regulation is a key link
that ensures the stable operation of the grid and high-
quality power supply. First, the smart grid is partitioned.
Then, the MG is introduced to optimise and solve the
voltage. From the results, the error value of the MG-AM
method was within -0.8 × 10−4 –1.2×10-4. The IAE, ISE,
ITAE, ITMSE, ISTAE, and ISTSE of the control method
were 0.0051, 0.0056, 0.027, 0.00204, 5.13, and 0.00463,
respectively. All error integration criteria results are lower
than other commonly used voltage regulation methods.
In specific case studies, the method based on MG-AM
not only had a relatively stable and concentrated voltage
distribution, but also tended to approach the reference
value of 1.00 p.u. Its performance was superior to other
methods. The output voltage fluctuation range of MG-
AM was [0.99–1.03], and the cumulative energy utilisation
efficiency was 0.83. The designed method can effectively
regulate voltage, ensuring that all nodes can receive stable
voltage during power transmission and distribution. It
can also achieve network load balancing and control the
direction of power flow.

This method combines MG and AM to focus on
key information while ignoring irrelevant information to
adapt to large-scale power grid demands, which has good
scalability. The individual agents in MG make decisions
based on local observation information, reducing reliance
on global communication. The AM can further screen
key information and reduce the amount of communication
data. Therefore, the combination of the two can effectively
improve communication robustness. In this model, if the
parameter settings are not reasonable, it may lead to
decision-making errors by the intelligent agent and affect
the voltage control effect. Therefore, the study accurately
estimates the action function and evaluation function
through a large amount of historical data and real-time
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Table 3
Statistical Significance of Evaluation Indicators

Methods MG-AM DNN PID RP

Evaluation indicators t p t p t p t p

MAE 5.32 0.001 6.27 0.02 6.75 0.01 3.08 0.002

IAE 6.87 0.001 5.86 0.01 5.86 0.02 2.53 0.003

ISE 4.29 0.001 4.02 0.01 5.43 0.03 6.15 0.001

ITAE 7.13 0.001 6.73 0.02 6.77 0.01 4.17 0.001

ITMSE 4.59 0.001 5.61 0.01 8.02 0.02 2.89 0.003

ISTAE 5.33 0.001 7.43 0.01 7.13 0.01 6.45 0.002

ISTSE 6.05 0.001 5.17 0.01 679 0.01 2.09 0.001

Table 4
Specific Improvements of Research Methods on Voltage Regulation

Dimension Existing methods MG-AM

Theoretical basis PID control, traditional optimisation
algorithm

MG+AM

Response speed Dependent on sampling frequency or
iteration performance

Update the status function in real-time

Robustness Dependent on preset thresholds, delayed
response to sudden faults

AM can monitor abnormal interference in real
time

Extensibility Relying on centralised control Multiple intelligent agents make decisions
simultaneously, and AM can adapt to different
devices

Communication Efficiency Dependent on broadband real-time
communication

Local observation combined with key
information can reduce unnecessary
communication consumption

Parameter adaptability Fixed parameters, difficult to adapt to
dynamic changes in voltage

Dynamically update state transition
probability and attention weight parameters

monitoring data, and updates them regularly to ensure the
reliability of the model.

However, there are still shortcomings in the research. In
subsequent research, for emerging energy smart grids, the
impact of external conditions such as lighting conditions
on the voltage environment needs to be considered
to optimise the performance of this voltage control
method. In addition, this method can be applied to
cross regional voltage coordination control, achieving
collaborative decision-making between regions through
MG theory, while using AM to focus on key information in
each region, improving the efficiency and stability of cross
regional voltage control.
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