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Abstract

In response to the problem of redundant power grid data, this
study proposes a sample processing model based on rough sets,
which can process power grid data. Then, a power system load
forecasting model based on an artificial bee colony (ABC) algorithm
is designed, and the simulated annealing algorithm is introduced to
perfect it. The experiment showed that the information retention
rates of rough set model, fuzzy set theory model, grey system theory
model, and probability graph model were 97.1%, 92.5%, 86.3%, and
84.1%, respectively. The accuracy of the research model was higher
than that of other models. In the validation set, the accuracy of the
four algorithm models was 0.94, 0.87, 0.85, and 0.83. This proves
that the proposed improved ABC algorithm can effectively predict
and schedule power loads, providing a solution for the scheduling

problem of the power system.
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1. Introduction

Power Load Forecasting (PLF) is the foundation of
power system scheduling and operation optimisation. By
accurately predicting the power load for a specific future
period, the system can arrange the power generation and
transmission resources to meet the power demand while
ensuring the stability and reliability of the power system.
In the load distribution of the power system (PSLD),
medium- and short-term (St) PLF represents a significant
area of focus and challenge for the power industry. PSLD
involves the rational planning and allocation of power
supply to meet the power demands of different users and
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regions while ensuring the stability and reliability of the
system [1], [2]. Moreover, the rapid fluctuations in supply
and demand can lead to situations where supply surpluses
or shortages cause operational inefficiencies, economic
losses, or even grid failures. For example, inaccurate
forecasting can result in under- or over-generation, leading
to wasted resources or, in extreme cases, blackouts [3], [4].
Despite the advancements in forecasting methods, current
approaches often struggle with large datasets and nonlinear
relationships. Traditional techniques fail to fully address
issues, such as invalid data, missing values, and noise,
which can severely degrade the quality of forecasts. These
issues not only hinder the predictive accuracy but also lead
to significant inefficiencies and increased operational costs.
Therefore, how to improve the accuracy and efficiency of
PLF has become a key issue that urgently needs to be
addressed. Tang et al. proposed a prediction method based
on variational mode decomposition and bidirectional long
St memory network (Bi-LSTM) to accurately predict power
loads and promote scheduling planning and environmental
sustainability in power systems. This method effectively
improved prediction accuracy and stability by decomposing
the load sequence and optimising hyper-parameters, and
could better track the trend of load changes [5]. Liu et al.
established a prediction model combined with long-term
(Lt) and St time series networks to accurately predict St
power loads and improve power grid decision-making and
user power management. This model captured the St and
Lt characteristics of loads by analysing the correlation
between variables and loads and combined them with
convolutional neural networks (CNNs) and LSTM. This
method model has shown good accuracy and stability in
load forecasting [6]. Ciechulski et al. designed a predictive
model based on recursive LSTM to develop an efficient St
PLF method and applied it to 24-h load forecasting in the
Polish power system. This model could effectively predict
irregular trends, and the ensemble prediction method
significantly improved prediction accuracy compared to
a single predictor, reducing errors by more than 6% [7].
This study proposes a rough set-based sample processing
(RSSP) method to handle the issue of complex power
grid data, which can process power grid data and remove
invalid data. Subsequently, a power system load forecasting
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Figure 1. Power grid system structure.

(PSLF) model is constructed using the artificial bee colony
(ABC) algorithm. To address the issue of the model
converging on local optima, the simulated annealing (SA)
algorithm is introduced. It aims to provide a scientifically
reliable solution for PSLD. The contribution of this
study lies in proposing a rough set theory (RST) for
attribute reduction of complex and error-prone power
grid data to identify the most important attributes in
the data.

1.1 Construction of PSLD Model Based on
Improved ABC Algorithm

1.2 RSSP Method

The power grid system refers to a complex network
composed of power generation, transmission, distribution,
and users, used to transport electricity from power stations
to end-users. Its structure is shown in Fig. 1.

In Fig. 1, the system is mainly composed of the
power generation end, the electricity consumption end,
and the dispatch end. In the power grid system, power
grid data are affected by various factors, such as network
failures, hardware equipment failures, and adverse weather
conditions, resulting in significant errors or missing data in
the collected data. This study adopts a parallel approach
of horizontal and vertical processing to process erroneous
data. Under normal circumstances, the power load is a
continuous and stable sequence. When there is an unstable
situation, it is necessary to process the data horizontally.
Its expression is given by (1).

Y(dvt):Y(d,tfl);rY(d,tJrl)' "

In (1), ¢ represents the sampling point. d is the quantity
of days. Y(d,t) means the power load value at sampling
point ¢ on day d. The load data also have obvious regularity,
that is, the load values at the same time every day are
basically the same or similar. If the difference exceeds the
design threshold, vertical processing method needs to be

used to process the data, as shown in (2).

Y(d1) = m(t) +r(t),Y(d,t) > m(t) o)
| m(t) — r(t),Y (d,t) < m(t)

In (2), r(t) represents the threshold, and m(t)
represents the predicted average value of the same sampling
point in recent days. To input the normal data of the same
type that is observed both before and after the missing
data into the fitting curve, it is necessary to apply the
principle of least squares, as expressed in (3).

Z a% = Amin« (3)
k=1

In (3), ai represents the input data. A, represents
the sum of squared differences. The units of data in PLF
have significant differences, so to reduce the abnormal
results caused by unit differences, it is needed to process
the data so that all influencing factors are within the same
numerical range, as shown in (4).

T, = L — Tmin ) (4)

Tmax — Lmin

In (4), x represents the data that needs to be
normalised. x,, represents the data output after normali-
sation processing. Tmax and Ty, represent the maximum
and minimum values of xz. Due to the complexity of
power data and the interdependence of various factors,
relying solely on experience cannot accurately determine
which is an important attribute. Therefore, attribute
reduction using rough sets is used to identify important
attributes. RST is a mathematical tool used to process
incomplete information, mainly used in fields, such as data
mining, pattern recognition, and decision support [8]. This
approach guarantees that the computational complexity
and real-time performance of the model will be maintained
while retaining the capacity to process uncertain data, as
illustrated in (5).

k=[POS,(Q)[/[U]. (5)
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Figure 2. Attribute reduction process diagram.
In (5), k represents the degree of dependency and @ Thfitielioe
is the set of attributes. p represents the attribute space population
and U is the set of all objects. Based on this premise, 1 Output
the importance of attributes can be further determined, as Caloulate

shown in (6).

ocp(er) = ve(D) = ye-e (D)
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In (6), D represents the decision attribute. Therefore,
the reduction algorithm based on attribute dependency is
shown in Fig. 2.

In Fig. 2, the first step is to determine the sample,
followed by selecting the set of conditional and decision
attributes, and then normalising to generate the decision
table. The reduction set is initially defined as an empty
set, and the dependency relationships of each attribute
are subsequently calculated to ascertain whether the
dependency relationships satisfy the requisite conditions.
If the conditions are not met, this step will continue to
execute [9]. If it is satisfied, a reduction set is added and
the combination with the highest dependency is selected as
the final reduction set to determine whether the decision
attribute has the same dependency on the conditional
attribute and the reduction attribute. If the results are the
same, the results are output to obtain data.

1.3 PSLD Model Based on Improved ABC
Algorithm

After extracting the attributes of various factors that affect
PLF, the preprocessing of the predicted data has been
completed. This study uses the ABC algorithm to predict
and schedule power loads [10]. The ABC algorithm process
is shown in Fig. 3.

In Fig. 3, the first step is to initialise the population
and then calculate fitness values. Scout bees ensure the
initial labelled food source (FS) and explore new FS. The
second step is to calculate the fitness value and perform
greedy selection. According to the roulette wheel method,
scout bees recruit follower bees and determine whether
to allocate FSs to them. If not, an FS for the follower
bees is selected. Follower bees search for FSs, change FS
labels, calculate fitness values, make greedy choices, and
record the best F'S location [11]. If allocated, the point is
directly recorded as the best F'S location. The third step
is to determine whether a reconnaissance bee has been
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Figure 3. ABC algorithm process.

generated. If so, a new FS is generated to replace the
labelled FS and mark the new FS to determine whether
the end condition has been met. If it does not occur, it
is necessary to determine whether the end condition has
been met. If the end condition is met, the result is output.
If it is not met, the above processes will be continued. The
load forecasting chart based on the ABC model is shown
in Fig. 4.

In Fig. 4, the historical data in the sample is
first preprocessed, and then the preprocessed data are
normalised. RST is used to extract data features. The
extracted results are used as input variables to determine
the various relevant parameters of the model, thereby
obtaining the optimal parameter values, and finally
conducting load forecasting. Although the ABC algorithm
has certain advantages in solving optimisation problems,
it relies on the search behaviour of bees, resulting in the
algorithm falling into local optima and being unable to
find global optima. Therefore, the SA algorithm is adopted
to improve the model. SA simulates the behaviour of
solid materials during annealing, gradually lowering the
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Figure 5. Optimisation diagram of ABC-SA algorithm.

temperature to approach the global optimal solution by
randomly searching in the solution space. The judgement
basis is given by (7).

remp(ﬁbtf”>. (7)

In (7), r represents the probability of being marked
as important, and ¢ is the temperature. ¢ represents the
original state of the solid, and F; is the energy in that
state. j represents the new state of the solid after being
disturbed. E; is the energy in that state. The ABC-SA
algorithm integrates the local search capability of the ABC
algorithm with the global optimisation advantage of SA,
thereby markedly enhancing its performance. ABC-SA has
stronger adaptability and can dynamically adjust search
strategies to handle complex optimisation problems and
constraints. The optimisation diagram of the ABC-SA
algorithm is shown in Fig. 5.

In Fig. 5, the first step is to initialise the algorithm
parameters. The initial solution expression of the parame-
ter dimension is given by (8).

7=N; Xx N, + N, + N, x N, + N,. (8)

In (8), N;, Np, and N, are the amount of neurons in
the input, hidden, and output layers. Then, a complete
set search is performed to generate a solution. In the bee
picking stage, one honey source corresponds to one bee
picking, and the expression for the new honey source is

given by (9).

V)= X} 41 and (0,1)(X} - X}). ©)

In (9), V represents the new honey source and X
represents the solution. Then, the difference in fitness
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between the new and old honey sources is calculated, as
shown in (10).

Af=fo — fo (10)

n (10), Af represents the difference in fitness. f,. and
fz represent the fitness of new and old honey sources. After
all the bees complete searching, they will share their honey
source information and fitness with the observation bees.
Reconnaissance bee determines the probability of each bee
being followed by selecting probabilities, as shown in (11).

N
i=1

In (11), p; represents the selection probability. fi¢;
represents the calculated fitness function value. Through
the roulette wheel strategy, follower bees are selected
to switch between bees, engage in search behaviour,
and determine the reserved honey source based on the
SA mechanism. The next step is to determine if the
honey source has been exhausted. When the number
of iterations is greater than or equal to the iteration
limit, the corresponding scout bees will transform into
reconnaissance bees. Finally, the reconnaissance bee
randomly generates new honey sources in the search
space and outputs the results. When using ABC-SA
for PLF, the performance of the model is affected by
multiple key parameters, such as population size, cooling
rate, and maximum iteration times. The population size
determines the diversity of the search space, and larger
populations can increase the coverage of the solution
space, but also increase computational costs. Through
experimental tuning, select a population size between 50
and 100 to balance efficiency and accuracy. The cooling
rate controls the rate at which the temperature decreases
during SA. Faster cooling may cause the algorithm to
fall into local optima early on, while slower cooling rates
can lead to longer computation times. The cooling rate
is set to 0.95 to optimise search efficiency. The maximum
number of iterations and stopping conditions are key
parameters for controlling computational complexity and
convergence speed, and appropriate adjustments can avoid
computational waste. To evaluate the impact of these
parameters, a sensitivity analysis was conducted. The
results indicate that population size has a significant
impact on prediction accuracy, with larger populations
improving accuracy but also increasing computation time.
The adjustment of cooling rate directly affects the global
search ability of the algorithm, and too fast cooling will
reduce accuracy.
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Figure 6. Performance analysis of various algorithm models: (a) Comparison of information retention rates of different
algorithm models and (b) Comparison of RAPE for different algorithm models.

2. Performance Analysis of PSLD Model Based on
Improved ABC Algorithm

2.1 Performance Analysis of RSSP Model

The central processor is Intel Core i5-8750H, and the
graphics processor is NVIDIA Geforce GTX2080Ti. The
graphics memory is 8 GB, the memory is 16 GB, and
the operating system is Windows 10. This study uses the
publicly available Global Energy Forecasting Competition
(GEFCom) dataset. This dataset contains electricity load
data from different regions and periods. Fuzzy Set Theory
(FS), Grey System (GS) Theory, and Probability Graphical
(PG) models are introduced and compared with the
proposed Rough Set (RS) model. Figure 6 shows the
results.

Figure 6(a) shows the changes in information retention
rates of various algorithm models as the size of the
training set increases. The X-axis represents the size of
the dataset, and the Y-axis represents the information
retention rate, measured in percentages. The higher the
information retention rate, the more valuable information
the model can retain, indicating that the algorithm is more
efficient in processing data. Figure 6(b) shows the average
relative error variation of different algorithm models as the
training set increases. The X-axis also represents the size
of the dataset, while the Y-axis represents the average
relative error, measured in percentages. A lower error value
indicates a higher accuracy of the model in prediction. As
shown in Fig. 6(a), with the increase of the training set,
the information retention rate of each algorithm model also
increases continuously. When the dataset size is around
300, the performance of the rough set algorithm model
tends to stabilise and shows convergence. When the dataset
size is 500, the information retention rates of the rough
set algorithm model, FS algorithm model, GS algorithm
model, and PG algorithm model are 97.1%, 92.5%, 86.3%,
and 84.1%, respectively. As shown in Fig. 6(b), as the
training set increases, the average relative error of each
algorithm model decreases continuously. When the dataset
size is around 500, the performance of the rough set
algorithm model tends to stabilise and shows convergence.
When the dataset size is 1000, the average relative errors
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Figure 7. Comparison of processing times for various
algorithms: (a) ACC under different time and (b) Model
processing time under different time.

of the rough set algorithm model, F'S algorithm model, GS
algorithm model, and PG algorithm model are 8.2%, 14.7%,
22.3%, and 26.4%, respectively. The results of comparing
the processing time of various method models are shown
in Fig. 7.

Figure 7(a) and 7(b) shows the accuracy and process-
ing time of each model after processing data from different
periods. In Fig. 7(a), the accuracy of RS for each period
is 0.92, 0.90, 0.95, and 0.97, respectively. The performance
of RS is the most outstanding among the four models. In
Fig. 7(b), at each period, the data processing time of RS is
0.25 s, 0.21 s, 0.20 s, and 0.23 s, respectively. Among the
four algorithm models, the shortest time is used.



Table 1

Configuration
ABC Parameter Name | Colony Size Food Source Size Max Limit Exploration
Iteration Factor
Reasonable Value | 100 50 300 150 Randomly
Initialised
ABC-SA | Parameter Name |Initial Temperature |Cooling Rate Termination |/ /
Temperature
Reasonable Value | 500 0.95 0.001 /
ABC-PSO | Parameter Name | Inertia Weight Individual Learning | Social Particle
Factor (C1) Learning Velocity
Factor (C2)
Reasonable Value | 0.7 1.7 1.7 20 /
ABC-GA |Parameter Name | Crossover Probability | Mutation Probability | Population /
Size
Reasonable Value | 0.8 0.05 100 / /
1.00 1.00
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Figure 8. (a) The accuracy of four algorithm models under different training sets and (b) The accuracy of four algorithm

models under different validation sets.

2.2 Performance Analysis of Load Allocation
Model Built on Evolutionary ABC

This study uses the GEFCom dataset, which is separated
into a training and a validation set in a 4:1 ratio.
The experiment uses the ABC model, the ABC-Genetic
Algorithm (ABC-GA) model, and the ABC-PSO model to
compare. The parameter configuration is shown in Table 1.

According to Table 1, for the ABC algorithm, the main
parameters include population size, FS size, maximum
iteration times, and constraints on abandoning poor FSs.
Figure 8 shows the performance of each model.

Figure 8(a) shows the accuracy performance of each
algorithm model in the training set. The X-axis represents
the size of the training set, and the Y-axis represents
accuracy, used to compare the learning performance of
different algorithms on training data. Figure 8(b) shows
the accuracy of each algorithm model in the validation set.
The X-axis represents the size of the validation set, and
the Y-axis represents the accuracy of the validation set.
As shown in Fig. 8(a), with the increase of the training

set, the performance of each algorithm model gradually
improves. When the training set size is around 600, each
algorithm model is basically trained and its performance
tends to stabilise. When the training set size is around
1000, the accuracy of ABC-SA algorithm model, ABC-
PSO algorithm model, ABC-GA algorithm model, and
ABC algorithm model are 0.97, 0.94, 0.90, and 0.88,
respectively. As shown in Fig. 8(b), with the increase of the
validation set, the performance of each algorithm model
shows a clear downward trend, among which the ABC-
SA algorithm model has the smallest downward trend.
When the validation set size is 500, the accuracy of the
ABC-SA algorithm model, ABC-PSO algorithm model,
ABC-GA algorithm model, and ABC algorithm model are
0.94, 0.87, 0.85, and 0.83, respectively. The experimental
results show that the ABC-SA algorithm model has the
highest accuracy on the training set, reaching 0.97. Figure 9
shows the predicted scheduling time of the four method
models.

In Fig. 9, training sets 1-4 are arranged in ascending
order for datasets of different sizes, and the validation set
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Table 2
Performance Analysis of ABC-SA Model in Different Datasets
Dataset ACC ACC F1 F1 RMSE REMS Time
(Training) | (Validation) | (Training) | (Validation) | (Training) | (Validation) (s)
GEFCom 0.97 0.94 97.10% 94.00% 8.20% 8.50% 0.25
UCI 0.95 0.92 95.30% 92.80% 10.50% 11.20% 0.31
PJM 0.93 0.89 94.00% 90.50% 94.00% 13.10% 0.35
REDD 0.96 0.93 96.20% 93.50% 9.80% 10.00% 0.21

is the same. Figure 9(a) and 9(b) represents the training
time and processing time of each model in the training
set and validation set. In Fig. 9(a), the ABC-SA model
has a lower training time, with training times of 0.7 s, 0.7
s, 1.2 s, and 1.3 s in different training sets, respectively.
In Fig.(b), ABC-SA is able to handle validation sets of
various sizes and has high efficiency for larger datasets.
The processing time of ABC-SA in different validation sets
is 0.8 s, 0.9 s, 0.9 s, and 1.2 s, respectively. Therefore,
the ABC-SA model has high computational efficiency. To
verify the universality of the model, three different power
datasets were selected for the study, and the results are
shown in Table 2.

According to Table 2, the accuracy showed high values
on both the training and validation sets, indicating that the
model has strong classification ability on these datasets.
The ACC of the UCI dataset on the training and validation
sets were 0.95 and 0.92, respectively, demonstrating the
model’s good generalisation ability. The RMSE of the PJM
dataset on the training and validation sets are 94.00%
and 13.10%, respectively, which are relatively small and
demonstrate its predictive accuracy. Finally, the required
time column shows the time consumed to train these
models. The training time of the REDD dataset is 0.21 s,
which is the shortest among the four datasets, indicating its
high efficiency in model training. The experimental results
show that the proposed method has excellent generalisation
ability.

3. Conclusion

In response to the problem of redundant power grid data
and difficulty in predicting electricity, this study proposed
an RSSP model that could process power network data.
Then, a PSLF model based on the ABC model was
proposed, and the SA was introduced to improve it to
address the condition of the model dropping into the
local optima. The results showed that when the validation
set size was 500, the accuracy of ABC-SA, ABC-PSO,
ABC-GA, and ABC models were 0.94, 0.87, 0.85, and
0.83, respectively. This study indicates that the proposed
algorithm model has excellent performance. To address
these issues, future research may consider the following
potential solutions. Due to the extensive computation and
iteration required by the ABC-SA algorithm, especially
when dealing with large-scale datasets, parallel computing
techniques can significantly accelerate the algorithm’s
computation process. By assigning tasks to multiple
processing units, computation time can be effectively
reduced and algorithm efficiency can be improved. To
further improve the adaptability and stability of the
algorithm, an adaptive parameter adjustment mechanism
can be introduced. This mechanism can dynamically
adjust algorithm parameters, such as temperature, learning
factor, and population size based on the progress of
the optimisation process, thereby avoiding premature
convergence or overly random search behaviour.
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