
International Journal of Robotics and Automation, Vol. 35, No. 1, 2020

AN ADVICE MECHANISM FOR

HETEROGENEOUS ROBOT TEAMS

Steven Daniluk∗ and M. Reza Emami∗,∗∗

Abstract

This paper presents an advice mechanism compatible with heteroge-

neous advisers that incorporates advice into the advisee’s policy via

a method guaranteeing convergence to an optimal policy. Further,

the mechanism has the capability to use multiple advisers at each

time step and decide when advice should be requested and accepted,

such that the use of advice decreases over time. Experiments are

formed with a simulated team of heterogeneous robots performing a

foraging task. We show that the proposed mechanism can provide

a performance improvement for homogeneous and heterogeneous

robot teams, and the use of advice decreases over time.

Key Words

Robot teams, robot learning, multi-robot coordination, advice

mechanism

1. Introduction

Autonomous robots require sophisticated behaviour that is
often achieved with performance enhancement algorithms
that learn the appropriate behaviour through experience.
By interacting with its environment, a robot can learn
through trial-and-error to develop a policy that maps states
to the appropriate actions. Applications have progressed
from simplistic objectives, such as balancing an inverted
pendulum [1], to more complex actions, such as groups of
robots working together towards a specific goal [2], [3], [4],
path planning for mobile robots [5], or enabling robotic
arms to manipulate unknown objects [6], [7].

Despite the capabilities of such performance enhance-
ment techniques, mostly based on the reinforcement learn-
ing algorithms, one shortcoming is the inevitable need to
explore a large number of possible states to learn the most
viable actions. Thus, as the task complexity grows, i.e.,
the number of possible states and actions increases, so
does the amount of experience required to learn an opti-
mal policy for each task. Such exploration is not only a

∗ University of Toronto Institute for Aerospace Studies, 4925
Dufferin Street, Toronto, Ontario, Canada M3H 5T6; e-mail:
steven.daniluk@mail.utoronto.ca, emami@utias.utoronto.ca

∗∗ Division of Space Engineering, Lule̊a University of Technology,
Lule̊a, Sweden S-981 28; e-mail: reza.emami@ltu.se
Corresponding author: M. Reza Emami

Recommended by Dr. Mohammad Biglarbegian
(DOI: 10.2316/J.2020.206-0166)

computational burden but also costly and even hazardous
when learning is performed with physical hardware that
often requires human involvement and is subject to wear.
Thus, the ability to learn from a small number of trials is
crucial.

Much work has been focussed on expediting the rate
at which a robot learns their task, such as reducing the
dimensionality of the state space [8], utilizing function
approximation methods [9], and applying reward shaping
techniques [10]. (See [11] and [12] for a survey on the
use of reinforcement learning in robotics.) An additional
approach to accelerating a robot’s learning is to utilize
knowledge from an expert. Doing so can guide the learning
process and reduce the amount of potentially costly explo-
ration required [13]. The expert knowledge is referred to as
advice, where the expert can be a human being or another
robot. Advice for an autonomous robot is analogous to
advice for human beings, where the knowledge of others
is leveraged to accelerate learning. Much like humans, a
robot can have many advisers of varying quality or capa-
bilities, and must effectively identify and utilize the poten-
tially more valuable knowledge of an adviser [14]. The role
of advice is even more crucial in robot teams, where many
robots may be learning to perform similar tasks in parallel.
Enabling teammates to exchange information may greatly
improve the performance of the entire team [15]. However,
care must be taken to ensure that the influence of advice
will not prevent a robot from learning an optimal policy.

To date, the existing advice mechanisms have mainly
relied on ad hoc rules for deciding who the adviser(s)
should be, and if their advice can be utilized. A disadvan-
tage of such heuristic approaches is that the mechanism’s
effectiveness is limited by the designer’s assumptions about
the application and their ability to generate the appropri-
ate rules. Such rules can include assigning a priori which
agents can be advisers, when their advice can be used, and
limiting how long the advice will be available to ensure a
stationary policy is reached. Therefore, this approach not
only requires additional testing for the mechanism to work
effectively but also limits the mechanism’s adaptability to
different applications.

In a realistic robot team, the robots may have different
capabilities, making the team heterogeneous, and each
robot may be in a different stage of learning. In this case,
the capability and relevance of advisers may be unknown
and change over time as each agent’s learning progresses.

53

Thus, attempting to handle such a range of behaviour
with static rules inevitably compromises the mechanism’s
effectiveness. Further, designing and testing rules for each
variation of agents or applications are often impractical.

To advance the benefits of advice for robot teams, a
mechanism is needed, which is capable of extracting the
appropriate behaviour on its own. The purpose of this
paper is to introduce a reinforcement-learning-based advice
mechanism that
1. does not require advisers with full knowledge of the

task;
2. is compatible with advisers of varying skill levels and

relevance;
3. guarantees convergence to an optimal policy;
4. diminishes the influence and usage of advice over time.

Section 2 of the paper provides an overview of re-
inforcement learning and previous approaches to advice.
Section 3 presents a formal definition of the proposed ad-
vice mechanism and proves the convergence to an optimal
policy for an agent utilizing the proposed advice mecha-
nism. In Section 4, the case study and experiments used to
demonstrate the mechanism are presented, and the results
from the experiments are discussed in Section 5. Finally,
some concluding remarks are made in Section 6.

2. Background and Related Work

2.1 Reinforcement Learning

For an autonomous agent that performs actions, a, in
states, s, and receives a reward, R, it must learn an appro-
priate mapping between states and actions. The purpose of
reinforcement learning is to develop such mapping, called
the policy π, that will maximize the expected reward of
the agent over its lifetime. The reinforcement learning
problem can be formalized as a Markov Decision Process
(MDP), which consists of a set of states S, actions A, tran-
sition probabilities between states T (s′, a, a), and rewards
R(s, a, s′).

The value of a particular state can be estimated by
the cumulative expected reward for the current and future
states (given the Markov property, the expected value of
a state does not depend on any previous states). The
Bellman equation (1) provides the expected value of a
state, as a recursive formulation depending on the value of
the succeeding state [16]. The factor γ ∈ (0, 1) discounts
the value of future states, giving a lower value to the states
further into the future:

vπ(s) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]

=
∑
a

π(a|s)
∑
s′
T (s′, a, s) [R(s, a, s′) + γvπ(s

′)] (1)

The Bellman optimality equation (2) represents the
value of state s, given that every subsequent action taken
is the optimal action:

v∗(s) = max
a∈A(s)

∑
s′
T (s′, a, s) [R(s, a, s′) + γv∗(s′)] (2)

An alternative formulation of the Bellman optimality
equation is to estimate the value of a state–action pair,
q∗(s, a), as given in (3). The benefit of such a formu-
lation is that it is not required to know the transition
function T (s, a, s) and is hence referred to as model-free
reinforcement learning:

q∗(s, a) =
∑
s′
T (s′, a, s)

[
R(s, a, s′) + γmax

a′
q∗(s′, a′)

]
(3)

A popular approach to estimate the state–action value
function q∗(s, a) is the temporal difference method, which
iteratively updates the value of the previous state as the
new state and the corresponding reward are experienced.
One such temporal difference method is Q-learning, which
uses the update rule given by (4) [17]. In (4), α ∈ (0, 1) is
the learning rate, which approaches 0 as t approaches ∞,
such that (4) will arrive at a locally optimal policy [17].

Qt+1(st, at) = Qt(st, at) + αt

(
Rt(st, at, st+1)

+ γmax
a∈A

Qt(st+1, a)−Qt(st, at)

)
(4)

An alternative to Q-learning is SARSA(0) [18], which
updates the values of Q(s, a) based on the selected action
in the next state, as given by (5):

Qt+1(st, at) = Qt(st, at) + αt(Rt(st, at, st+1)

+ γQt(st+1, at+1)−Qt(st, at)) (5)

The policy for selecting actions, π, can either be de-
terministic, e.g., greedily selecting the most optimal ac-
tion, or probabilistic, which will form a distribution over
all possible actions. The motivation for a probabilistic
policy is that it provides a balance between exploration
and exploitation of the current value function. An op-
timal policy depends on the value function being deter-
mined, which by (2) requires every state to be visited.
Utilizing a probabilistic policy enables new states to be
explored.

2.2 Related Work

The concept of advice for a computer program has existed
for nearly 60 years [19]. Much of the recent research
into advice has been focussed on uses for reinforcement
learning algorithms, due to their popularity. In general,
advice within a reinforcement learning context can take
three forms:
1. incorporating prior information into the agent’s policy;
2. sharing a set of experiences; and
3. recommending an action.

Incorporating prior information into the agent’s policy
is often referred to as transfer learning and is achieved
by either imposing human generated rules onto the policy,
or creating a mapping from a previously learned policy for
a related task [20]. Transfer learning can create a proper
jumpstart in the learning process [21] and avoid much of the

54

early exploration costs. However, this requires extensive
prior knowledge about the task and agents to generate
the appropriate mappings. Since there is a cost of human
involvement to generate the mappings for each application,
transfer learning is most applicable for tasks and agents
that are not frequently subject to change, such as RoboCup
competitions where it is commonly applied [22].

The second form of advice is sharing experiences
between agents. After performing what is deemed as a
successful series of actions, the adviser agent will share
with the advisee the set of 〈St, St+1, At, Rt〉 tuples that
led to success. The advisee then replays these experiences
with the intention that they will learn to replicate this
behaviour.

In [23], a theoretical analysis of exchanging experiences
is performed, assuming that agents simply observe their
adviser and replay each of the observed experiences as if
they were their own. Further, it is shown that the use of
experiences reduces the search time for an optimal policy to
be independent of the state space size and only dependent
on the length of the optimal solution, i.e., the number of
consecutive actions.

In [24], a series of successful experiences from a knowl-
edgeable advisor, i.e., an agent with a learned policy or a
human controller, are replayed by a learning agent. Such
demonstrations enabled the agent to not only learn more
quickly but also perform tasks that they were initially
unable to learn on their own. As mentioned in [24], a
limitation of advice in the form of sharing experiences is
the potential for harmful over-training of the agents, where
an agent too strongly prefers certain actions because it
has been repeatedly taught to do so, resulting in poor
generalization for the agent.

An important point to note about exchanging experi-
ences as advice is that if there is any heterogeneity between
agents, such as robots with different capabilities, the re-
wards and state transitions shared in the experience may
not be attainable for the advisee. Without some method
of determining if an adviser is relevant, this can poten-
tially cause the advisee to learn an incorrect policy through
harmful over-training.

The third form of advice is a recommendation about
which action to perform. Advice in the form of action
recommendations can be generated either by another agent
or by human beings and can be treated as a binary decision,
i.e., accept or reject, or as a suggestion that acts to bias
the agent’s own decision.

The effect of biasing an agent’s decision via a reward
signal is analysed in [23], where in each state an agent can
receive an additional reward from the adviser. As identified
in [23], biasing the reward signal provides feedback only
after the action is performed, making the expert’s advice
not immediately available when it is first needed. However,
it is shown that if advice can be provided immediately when
it is needed, then the search time for an optimal policy will
be independent of the state space size and only dependent
on the length of the optimal solution (identical to the
use of experiences). One disadvantage of supplementing
the reward signal as a form of action recommendation is
the possibility for an agent to learn the incorrect policy.

Similar to the use of experiences as advice, this is a problem
that can arise with the use of heterogeneous agents.

In the Reinforcement and Advice-Taking Learning En-
vironment (RATLE) mechanism [25], human observers are
used to generate action suggestions and decide when they
should be used. Advice is formed as IF–THEN or WHEN–
REPEAT–UNTIL statements, which are then incorporated
as inputs into a connectionist Q-learning agent. By incor-
porating advice directly into the agent’s neural network,
it can be further processed and potentially overruled by
the agent’s own policy. When compared to an agent that
blindly obeys the same advice, the use of the RATLE
mechanism results in faster learning. An important result
from this work is that it demonstrates that the capability
to further process advice can be beneficial.

The Skill Advice Guided Exploration (SAGE) mecha-
nism [26] uses action suggestions from multiple advisers to
bias the agent’s policy. An agent selects an action based
on its own action selection probability plus a weighted
combination of all advisers’ action selection probabilities.
The weighting is determined by a shaping function that
depends on the difference between the advisee’s current
state’s utility and that of the adviser, as well as the fre-
quency that each action is advised in the current state.
Such an approach is attractive, because all advisers are
always utilized, and their influence can vary depending on
the weighting attributed to them. The SAGE mechanism
has the important ability to reject bad advice, i.e., an
action suggestion with repeatedly low utility values, by
attributing a very low weighting to it. However, the ability
to reject advice happens on a per state basis. If the same
adviser continues to provide poor advice they are not re-
jected entirely, but only in particular states in which bad
advice is repeatedly provided. This means that areas of the
state space where an adviser has little experience can be
identified, but outright rejection of an advisor will be very
slow. Further, the benefit of using all available advisers
comes with high computational and communication costs.

Building upon [25], Preference Knowledge-Based Ker-
nel Regression (Pref-KBKR) provides another approach to
using humans for biasing an agent’s decision [27]. The
advice is a preference for one action over another in a
particular state, implying that the value of actions should
have a specific hierarchy. Similar to RATLE and SAGE,
Pref-KBKR provides the possibility for an agent to reject
the advice, if they strongly disagree with it, by express-
ing advice as a preference. The advice is pre-generated
by a human and takes the form of a series of IF–THEN
rules, similar to the RATLE mechanism. Experiments
were performed using agents foraging for food while avoid-
ing enemies. Different pieces of advice were tested, and it
was found that for all variations of advice the agents with
advice outperformed those without.

An alternative to biasing an agent’s decision is to
provide an agent access to the policy of an adviser. Advice
Exchange [28] is a mechanism that uses other agents as
advisers, where each agent temporarily uses the policy of
their adviser to select the current action. At the beginning
of each new learning epoch, the adviser of the system is
selected to be the best performing agent (determined by the

55

average utility value of selected actions). At each instant,
agents decide to accept or reject the advice by comparing
their average utility and the utility of each possible action
to the advisers. Advice Exchange along with SAGE is
the only mechanisms that actively select their advisers. A
limitation of Advice Exchange is that the choice of adviser
only changes once per learning epoch. Additionally, since
adviser selection is only dependent on the performance, it
is possible for an irrelevant, yet well performing, advisor to
be selected. The possibility of irrelevant adviser selection,
combined with infrequent adviser selection, is likely to
be problematic for agents with heterogeneous capabilities.
Improvements to Advice Exchange have been made by
incorporating a form of memory [29], but at the cost of
additional rules and parameters for the mechanism.

3. A New Advice Mechanism

In this section, the formulation of a new advice mechanism
with the four capabilities listed in Section 1 is presented.
The first capability, to not require advisers with full knowl-
edge of the task, emphasizes the need for utilizing partial
knowledge from other agents. During the initial stages of
learning, each agent’s knowledge of the task will be sparse,
but the team collectively may have near complete knowl-
edge. The second capability of compatibility with advisers
of varying skill levels and relevance is essential for heteroge-
neous agents. As the robots’ capabilities become more di-
verse, it becomes more important for an advice mechanism
to identify the usefulness of each adviser on its own. The
third capability of convergence to an optimal policy not
only provides a theoretically sound mechanism but also is
of great importance to heterogeneous robot teams. When
a discrepancy exists between robots, there is a risk that
an adviser may guide an agent towards a different policy.
Finally, the fourth capability for the influence and usage
of advice to diminish over time serves to make the mecha-
nism practical for real world applications, where each use
of advice incurs a communication and computational cost.

The new advice mechanism, called Preference Advice,
will be presented as follows: first, a method for characteriz-
ing the information possessed by an agent about a state, as
well as incorporating information from an adviser, i.e. ad-
vice, into the advisee, will be shown. This will be followed
by demonstrating that a reinforcement learning agent in-
corporating the advice of an adviser in the method shown
will converge to a stationary and optimal policy. Finally,
a formulation for an MDP will be presented that deter-
mines when an agent needs advice, and which advisers it
should use.

3.1 Incorporating Advice

As the purpose of a reinforcement learning agent is to de-
velop an optimal policy by learning the value of each state
and action, how knowledgeable that agent is about a state
should be dependent on these values. However, instead
of directly using utility values which can vary greatly in
magnitude between applications, it is advantageous to use
the probability values for selecting each action, which are

bounded on the interval [0, 1]. To assess how knowledge-
able an agent is about a state via action selection probabil-
ity values, it is assumed that a high certainty about which
action(s) to select can be directly related to a high level of
knowledge in the given state. Therefore, the greater the
deviation from equal probability for all actions, the more
knowledgeable an agent is likely to be.

To convert state–action values, Q(s, a), to probability
values for each action, p(ai), a Boltzmann distribution can
be used as shown below:

p(ai) =
eτt(s)Q(s,ai)

n∑
j=1

eτt(s)Q(s,aj)

, i = 1, . . . , n (6)

where n is the number of actions and τt(s) is a temperature
parameter controlling the smoothness of the distribution,
which can vary between states. In the context of action
selection probabilities, an agent can be said to have zero
knowledge about its current state when no single action is
considered to be more valuable than any other. If there
are n possible actions, then this corresponds to each action
having an equal probability value given by

p(ai) = ε =
1

n
; i = 1, . . . , n (7)

Conversely, an agent can be said to have the maximum
possible amount of knowledge about its current state when
all probabilities are attributed to a single action, repre-
sented by

p(ai) = 1, and p(aj) = 0 ∀i �= j (8)

Let d(ai) = p(ai)− ε define the distance between selection
probability of an action and the base value. The preference
level, k(ai), of action ai is defined to be proportional to
the square of the distance d(ai), as given by

k(ai) = sign(d(ai))d(ai)
2, i = 1, . . . , n (9)

Therefore, the set K = {k1, . . . , kn} represents the
preference levels for the actions in a given state, where
the magnitude of each element represents the magnitude
of preference for each action, and the sign represents a
“preferred to” (k > 0) or “preferred not to” (k < 0) action.

LetKo denote an agent’s initial set of preference levels
for the actions in a state, and letKm denote the preference
levels of adviser m in the same state. For each action a,
the advised preference level is a linear combination of the
advisee and adviser preference levels, as given by

k̂(ai) = ko(ai) + λt(s)km(ai); i = 1, . . . , n (10)

where λt(s,m) controls the influence of advice from adviser
m and will be derived in Section 3.2. The advised action
selection probabilities, p̂(ai), are then obtained by

p̂(ai) =
ε+ sign(k̂(ai))

√
|k̂(ai)|∑n

j=1 p̂(aj)
; i = 1, . . . , n (11)

56

Equation (11) ensures that all selection probabilities will
form a valid distribution. The advised policy then se-
lects actions based on the advised selection probabilities
p̂(ai).

3.2 Advised Policy Convergence

As the use of advice will alter the selection probabilities
for each action, and hence the agent’s policy, this can
potentially prevent an agent from learning the true value
of each Q(s, a) and developing an optimal policy. Given
the variety of methods available for updating the values of
Q(s, a), often having different convergence requirements,
we will demonstrate convergence with an advised policy for
two commonly used methods: Q-learning and SARSA(0).
Both methods update one Q(s, a) at a time, however, the
Q-learning update (4) does not depend on the agent’s
current action selection policy, while the SARSA(0) update
(5) does. Consequently, the SARSA(0) method has more
strict convergence requirements.

As detailed in [30], the convergence of SARSA(0) can
be proven by treating the update as a stochastic process
described by Theorem 1 of [31]. The SARSA(0) method is
shown to converge to the true values of Q(s, a) when the
policy for selecting actions guarantees infinite exploration
(i.e., each action in every state is experienced infinitely
many times) and that at time infinity the policy becomes
greedy. Naturally, the policy at time infinity will be
optimal given that the true values of Q(s, a) have been
reached and actions are greedily selected. The convergence
of Q-learning only requires infinite exploration to reach
the true values of Q(s, a); however, the policy must also
become greedy at time infinity if an optimal policy is to be
reached.

Thus, for Q-learning and SARSA(0) to converge using
an advised policy, two requirements must be met. First,
the advised policy must guarantee infinite exploration and
become greedy at time infinity. Second, the influence of
advice must diminish to zero at time infinity, enabling the
agent to converge to a stationary policy. The fulfillment of
these two requirements will guarantee convergence to an
optimal policy in the presence of advice.

Lemma 3.1. Let Di be an increasing sequence of
σ-fields, and let Ai be Di measurable. Then the follow-
ing holds with probability 1:

{
ω :

∞∑
i=1

P (Ai|Di−1) =∞
}

= {ω : ω ∈ Ai i.o.} (12)

Lemma 3.2. Consider a communicating MDP and
the reinforced decision process:

(x1, a1, r1, . . . , xt, at, rt, . . .) (13)

Let vt(s) denote the number of visits to state s up to
time t, vt(s, a) denote the number of times action a has
been chosen in state s during the first t time steps, and
ts(i) denote the time when state s has visited the ith

time. Assume that the action at time t, at, is selected
purely on the basis of the statistics Dt:

P (at = a|Dt, at−1, Dt−1, . . . , a1, D1) = P (at = a|Dt)

(14)

where Dt is computed from the full history (x0, a0,
r0, . . . , xt). Further, assume that the action selection
policy is such that{
ω : lim

t→∞ vt(s)(ω) =∞
}
⊆
{
ω :

∞∑
i=1

P (at,i = a|Dt,i)(ω) =∞
}

(15)

Then, for all (s, a) pairs, vt(s) → ∞, and vt(s, a) → ∞,
with probability 1.

Lemma 3.3. Consider an agent with a policy πo given
as a set of probabilities P (a|s, t,Q) determined from a
Boltzmann distribution (6). If the temperature param-
eter τt(s) is defined as

τt(s) =
ln(vt(s))

maxa∈A |Qt(s, amax)−Qt(s, a)| (16)

where amax = argmaxa∈AQt(s, a), then policy πo guar-
antees that each action a in every state s is experienced
infinitely often and becomes greedy at time infinity.

The proofs for Lemmas 3.1–3.3 can be found in [30].
Lemmas 3.1 and 3.2 show that if the sum of selection
probabilities for each action is infinite, then each action
a in every state s will be experienced an infinite number
of times (i.e., infinite exploration is achieved). Lemma
3.3 provides a policy that achieves infinite exploration and
becomes greedy at time infinity. Therefore, to achieve
infinite exploration under an advised policy, we wish to
show that

∑∞
i=1 P (a|s, ts(i)) = ∞, where ts(i) is the time

of the ith visit to state s.

Theorem 3.4. Let an agent determine its initial ac-
tion selection probabilities, po(ai), via a method, which
ensures infinite exploration and becomes greedy at time
infinity, such as Boltzmann exploration (Lemma 3.3).
Let the advised policy π̂ be obtained by incorporating
advice via (10) and having λt(s) defined as

λt(s) =

(
ε

vt(s)
− 1

)2

+
ko(amin)

ε2
(17)

where amin = argmina∈Ako(a). Then, the advised policy
π̂ guarantees that each action a in every state s is
experienced infinitely often and becomes greedy at time
infinity. Additionally, λt(s) → 0 as t → ∞. Therefore,
an advised agent using the Q-learning or SARSA(0)
update method will converge to a stationary and optimal
policy at time infinity.

Proof. The influence of advice will alter the initial action
selection probabilities, but it must not prevent infinite ex-
ploration. Utilizing Lemmas 3.1 and 3.2 and the knowledge
that

∑∞
i=1 c/i = ∞, where c is a constant, the require-

ment of infinite exploration can be fulfilled if the following

57

condition holds for the advised policy π̂ with the action
selection probabilities defined in (11):

p̂(ai) ≥ c

vt(s)
, i = 1, . . . , n (18)

The advised action selection probability p̂(ai) will depend
on the influence of the adviser in (11), governed by λt(s).
Additionally, as we are concerned with maintaining a min-
imum action selection probability across all actions a ∈ A,
λt(s) will be limited by the action that reaches the mini-
mum selection probability given by the condition in (18)
with the least influence from adviser. This will occur when
the actions with the lowest preference level for the advisee
and adviser are the same. Let this limiting action be de-
noted by amin. An expression for λt(s) which satisfies (18)
can be found by relating p̂(amin) to the advised preference
level k̂(amin):

p̂(amin) ≥ c

vt(s)[
−k̂(amin)

]1/2
+ ε ≥ c

vt(s)

[−ko(amin)− λt(s)km(amin)]
1/2 + ε ≥ c

vt(s)

−ko(amin)−
(
ε2/vt(s)− ε

)2
km(amin)

≥ λt(s)

where the sign of k̂(amin) in the square root is set to
negative, because p̂(amin) always results in a negative
preference (prefer not to), and the constant c is selected to
be equal to ε2. We set the adviser preference km(amin) to
its lowest limit (strongly prefer not to) of −ε2, determined
by setting p(ai) = 0 in (9), to come up with a conservative
upper bound for λt(s). This indeed corresponds to the
advisor’s agreement with the advisee on the least preferred
action, resulting in a level of influence for which anything
below will guarantee condition (18). Hence, we can express
λt(s) as

λt(s) ≤
(

ε

vt(s)
− 1

)2

+
ko(amin)

ε2

Therefore, by choosing λt(s) as defined in (17), each action
a in every state s will be experienced infinitely often.
Further, the influence of advice diminishes to zero, as for
every state s, lim

t→∞ vt(s) = ∞, resulting in lim
t→∞λt(s) = 0.

As at time infinity the initial agent’s action selection policy
becomes greedy, and the influence of advice diminishes to
zero, the advised policy will also become greedy at time
infinity. Thus, the convergence requirements for Q-learning
and SARSA(0) have been met, and the advised agent will
converge to a stationary and optimal policy. �

It can easily be verified that the advised preference
levels produced by incorporating an adviser’s advice via
(10) with λt(s) defined in (17) will always be within the
bounds determined by (9).

Lemma 3.5. With λt(s) defined by (17), it will always
be true that

−ε2 ≤ k̂(ai) ≤ (1− ε)2 i = 1, . . . , n

Proof. The lower and upper bounds of k̂(ai) are −ε2 and
(1− ε)2, as determined by (9) for p(ai) = 0 and p(ai) = 1,
respectively. The proof that −ε2 ≤ k̂(ai) follows directly
from theorem 3.4, as λt(s) was derived such that p̂(ai) ≥
ε2/vt(s) i = 1, . . . , n, for any values of km(ai). For the
largest advised preference level, we consider the case that
maximizes the increase in preference level due to advice.
This occurs when the preference levels for each action of
the advisee and adviser have the same sign, and when n−1
actions have equal preference levels of k(âmin) < 0, and
a single action has the preference level of k(âmax), where
âmin = argmina∈Ak̂(a) and âmax = argmaxa∈Ak̂(a). In
this case, the advisee’s preference level for action âmax can
be expressed as ko(âmax) = −(1/ε − 1)2ko(âmin), where
ko(âmin) can be set to −(ε2/vt(s) − ε)2, which comes
from setting po(âmin) = ε2/vt(s). Letting the adviser’s
preference be set to the maximum value of (1− ε)2, we can
compare k̂(âmax) to the upper limit

(1− ε)2 ≥ k̂(âmax)

(1− ε)2 ≥ ko(âmax) + λt(s)(1− ε)2
(1− ε)2 ≥ −(1/ε− 1)2ko(âmin)

+

((
ε

vt(s)
− 1

)2

+
ko(amin)

ε2

)
(1− ε)2

(1− ε)2 ≥ (1/ε− 1)2(ε2/vt(s)− ε)2

+

((
ε

vt(s)
− 1

)2

− (ε2/vt(s)− ε)2
ε2

)
(1− ε)2

(1− ε)2 ≥ (1− ε)2(ε/vt(s)− 1)2

which will be true for any vt(s) ≥ 1 (and n > 1). �
An interesting property of the proposed method of

incorporating advice is that the convergence of the advised
policy does not depend on the adviser. Infinite exploration
and greedy action selection can be achieved for any advice.
A poor adviser may guide an agent towards imperfect
actions and slow the rate at which the agent learns the
task, but it will not prevent convergence to an optimal
policy. This property is particularly useful for scenarios
with multiple advisers in heterogeneous teams.

3.3 Determining When to Use Advice

With regards to utilizing the advice of an adviser, it is of
course possible to use several advisers at each time step.
However, each time advice is requested from an advisor,
a communication cost is incurred. Further, the benefit of
advice will diminish over time as the advisee learns its own
task, which should be reflected in how frequently advice
is requested over time. Thus, polling every advisor for
its advice, or polling a fixed number of advisers at each
step, is not desirable, as it can result in receiving advice
of little benefit and unnecessary communication costs.

58

Our approach is to enable the advice mechanism to learn
when it should accept or reject advice, and when it should
continue seeking more advisers.

The advice utilization process, namely learning the
relationship between an agent’s own stage in improving its
performance and the benefit of advice, can be represented
by an MDP, and hence a reinforcement learning algorithm
can be applied. At each time step, an agent can decide
if it needs advice, if it should accept the adviser’s advice,
ask another adviser, or cease asking additional advisers.
Thus, the mechanism must learn when it is most appro-
priate to request advice, and when the advice should be
accepted. The advice utilization process is defined by the
〈SA, AA, TA, RA〉 tuple:

State sA ∈ SA is defined by sA = {ψo, ψ̄m, γ},
which contains information in the agent’s current
state about (i) the advisee’s confidence level, (ii)
whether or not the adviser’s confidence level is greater
than the advisee’s, and (iii) the advisee’s experience.
The elements ψ and ψ̄m are defined as

ψ =

√
1

1− ε

[
n∑

i=1

(d(ai))
2

] 1
2

(19)

ψ̄m =

⎧⎨
⎩1, when ψm > ψo

0, otherwise

The values of ψm and ψo are obtained using the action
selection probabilities of the adviser and advisee,
respectively. The value of ψ provides a single metric
about the agent’s confidence level in the current
state, which is bound on the interval [0, 1] for any
number of actions. In the zero confidence case,
where the selection probabilities of all actions are
equal, ψ = 0; whereas for the maximum confidence
case, when all probabilities are attributed to a single
action, ψ = 1. The agent’s experience in the current
state is represented by γ = 1/vt(s).
Action aA ∈ AA= {accept, skip, cease}, where
accept incorporates the advice with (10) and asks the
next adviser for advice, skip ignores the advice and
asks the next adviser for advice, and cease rejects the
advice and ceases asking for any more advice in the
current state.
Transition TA(s′A, aA, sA) represents the proba-
bility of transitioning from state sA to state s′A after
performing action aA.
Reward RA(sA, aA, s′A) defines the reward re-
ceived by the mechanism after each action and is
given by

RA =

⎧⎨
⎩
(
1 + δ

(
ψ̂ − ψo

))2
, aA = accept

(1 + ψo)
2
, otherwise

(20)

where ψ̂ is found with (19) using the advised action
selection probabilities from (11). The coefficient δ
is a constant positive value to balance accepting and
rejecting advice and can be adjusted depending on
the application.

At the beginning of each time step, before an agent
takes an action, the advice mechanism will first decide if
advice should be requested at all. As the mechanism’s
state sA depends on the adviser’s advice, and no advisers
have yet been polled, this decision making is achieved by
selecting an action from the mechanism’s policy as if there
were an adviser available with stronger confidence than the
advisee. Hence, the first state consists of sA = {ψo, 1, γ},
which corresponds to the mechanism being optimistic such
that a suitable adviser is available. If the selected action
is cease, then the agent does not request any advice at
the current time step. Otherwise, an adviser is polled for
its advice, a new state sA is formed, and the mechanism
chooses between accept, skip, and cease. When the advice
is accepted, the advisee’s preference levels are updated
with (10), and advice is requested from a new adviser (pre-
suming one is available). When the skip action is selected,
the advice is ignored, and advice from a new adviser is
requested. Finally, when the cease action is selected, the
adviser’s advice is not used, and the mechanism ceases
requesting any additional advice for this time step. Hence,
the mechanism continues requesting advice, either accept-
ing or ignoring the advice, until either the cease action is
selected or there are no more available advisers.

The order in which advisers are polled for their advice
is not part of the mechanism’s decision-making process.
Instead, a ranking scheme is used to determine the order
in which advisers are polled. The optimal adviser for an
agent is one with identical capabilities and who has learned
the values of Q(s, a),∀s, a. If any heterogeneity exists be-
tween agents, their transition probabilities between states
will differ, and hence the true values of Q(s, a) for agents
will not necessarily be equal for each action a in every
state s. As long as the method for learning the values of
Q(s, a) implemented by the agent is guaranteed to con-
verge to the true values of Q(s, a),∀s, a, at time infinity
Qo(s, a) = Qm′(s, a), and hence ko(a) = km′(a), where the
o and m′ subscripts denote the advisee and an optimal ad-
viser, respectively. Therefore, selecting the best available
adviser is equivalent to finding the advisor with the greatest
similarity, using a similarity measure which is maximized
when Qo(s, a) = Qm′(s, a). The dot product between the
unit vectors of the advisee’s and adviser’s preference levels,
given by (21), is one such measure. Using the preference
levels, as opposed to directly using the values of Q(s, a) or
p(a), is advantageous as the values of k(a) are signed, so the
dot product can also indicate when two agents oppose each
other. Equation (21) reaches a maximum of 1 only when
the preference levels are equal, is zero when either agent has
zero preference across all actions, and can be negative when
the preference levels oppose each other. The similarity
measure is updated as an exponential moving average each
time the adviser is polled for its advice, given by (22), where
ρ is a constant decay rate. During each advice round, ad-
visers are then selected in the order of most to least similar:

βm =

(
Km

||Km||
)
·
(

Ko

||Ko||
)

(21)

ωm,t+1 = ρωm,t + (1− ρ)βm (22)

59

Lastly, the policy for the advice mechanism, πA(sA), is
developed through a Q-learning algorithm with the update
rule defined in (4). The steps to be performed by the
mechanism to update an agent’s preference levels at each
time step are summarized in Algorithm 1.

Algorithm 1. Steps for updating the advice
mechanism.

1: K̂←Ko

2: Set state sA
3: aA ← πA(sA)
4: if aA ! = cease then
5: Set adviser order
6: Poll next adviser m
7: Set state sA
8: while next_adviser_available do
9: Update similarity measure
10: aA ← πA(sA)
11: if aA == accept then
12: Update K̂ with (10)
13: end if
14: if aA == ceaseandnext_adviser_available then
15: Poll next adviser m
16: end if
17: Set state sA
18: Perform Q-learning update with (4)
19: if !next_adviser_availableor aA == cease then
20: Break
21: end if
22: K o ← K̂
23: end while
24: end if
25: return K̂

There are two additional points to note about the
proposed mechanism. First, the mechanism has only two
parameters: δ in (20) and ρ in (21). Second, the state space
for the advice mechanism is small. With three possible
actions, two state elements in the range [0,1], and one
binary state element, the state space size is 6 × u × v,
where u and v are the number of discretization intervals
for the state elements ψ and γ, respectively. A small state
space is intentional, as advice is most beneficial in the
early stages of learning, and the state space of the advice
mechanism must be significantly smaller than the agent’s
reinforcement learning problem if a benefit is to be received
in the early stages of learning.

4. Case Study

To demonstrate the effectiveness of the Preference Advice
mechanism, a case study with a heterogeneous robot team
is used. The team is composed of robots with varying
capabilities, where each robot is individually learning its
task with a Q-learning algorithm while receiving advice
from their peers or virtual advisers.

A foraging scenario is used where the goal of the team
is to collect all the items in the area and bring them to a

target zone while avoiding obstacles. An illustration of the
scenario is shown in Fig. 1. Each robot is initially assigned
an item to collect randomly. The total foraging area is
10 m by 10 m, with four obstacles each having a diameter
of 1 m, and a single target zone with a diameter of 2 m.
The items to be collected are 0.5 m in diameter, and their
quantity is equal to the number of robots used in each
experiment. Additionally, there is a circular area 4 m in
diameter in the centre of the foraging area that represents
rough terrain, which only certain types of robots can pass
through. The rough terrain is intended to mimic real
applications of heterogeneous robot team, such as search
and rescue, where environmental conditions may be more
unfavourable for certain robots. Four different types of
robots are used, differing in their speed of movement and
their ability to traverse the rough terrain: S–NR, S–R,
F–NR, and F–R, where S, F, NR, and R represent slow,
fast, non-rugged, and rugged, respectively. Only rugged
robots can traverse the rough terrain. Each run begins with
the items, obstacles, target zone, and robots, randomly
positioned within the foraging area, and ends when either
all items have been returned to the target zone, or 4,000
iteration steps have been performed.

The learning process for each robot is an MDP with a
〈S,A, T,R〉 tuple defined as

State s ∈ S is defined by s = {td, tθ, gd, gθ, od,
ot}, which contains the distance d and relative angle
θ from the robot to centre of the item t, goal location
g, as well information about the closest obstacles.
The obstacle states, od = {o1,d, . . . , ok,d} and ot =
{o1,t, . . . , ok,t}, contain the distance d and type t of
the closest obstacle along k equally spaced detection
rays. Three detection rays are used, orientated with
a separation of pi/10 rads. The rigid obstacles, walls,
and items (other than the one the robot is aiming
at) are treated as the same type, while the rough
terrain is treated as a separate type. All distances
are limited to a maximum range of 2 m and divided
into five discrete intervals, while all angles are divided
into five discrete quadrants within the interval [0, 2π)
rads.
Action a ∈ A is defined by [move_forward,
rotate_left, rotate_right, interact]. The move_
forward action will move the robot 0.2 m for a
slow robot and 0.4 m for a fast robot, while the
rotate_left and rotate_right actions will move the
robot ±1/5π radians for all robots. interact attaches
an item to the robot if the robot is within 0.5 m of
the item and the item is the robot’s assigned item.
TransitionT (s ′, a, s) represents the probability of
transitioning from state s to state s′ after performing
action a.
Reward R(s, a, s′) is the reward given to each
robot for its action, and is defined in Table 1. A
reward is given when the robot moves at least a
threshold distance Δd (set to 30% of the robot’s step
size) towards or away from an item or goal area,
or their assigned item is returned. When the robot
does not receive any reward for its movement with
respect to an item or for returning an item, a reward

60

Figure 1. Sample foraging scenario displaying robots, items, obstacles, target zone, and the area of rough terrain.

Table 1
Reward Function for Robot Actions

Behaviour Reward

Robot moved at least Δd towards 5
assigned item

Robot moved at least Δd away from 0.1
assigned item

Item moved at least Δd towards 5
target zone

Item moved at least Δd away from 0.1
target zone

Item is returned to target zone 50

None of the above occurs 1

of 1.0 is given. The magnitude of the reward for
each action depends on the priority of tasks as well
as team configuration. In a foraging scenario, a
relatively high reward should be given when a task
is completed, i.e., an item is returned to the target
zone. Further, a reward value should be selected
for moving towards a designated item or moving an
item towards the target zone. Actions that are not
aligned with the defined tasks should be given an
award less than one (i.e., penalty) to discourage the
robots from repeating them, such as moving away
from the designated item or carrying the item away
from the target zone.

Each robot develops an individual policy π through a
Q-learning algorithm with the update rule in (4). The dis-
count factor γ is held constant at 0.3, while the learning rate
α decays to 0 as t → ∞, governed by α = 1/(1 + vt(s))

σ,
where σ is a constant that is set to 0.9. Each action has
a probability of being selected defined by a Boltzmann
distribution with a modified version of τt(s) in (16) that

becomes more greedy over time while maintaining a mini-
mum probability of 0.02 over all actions. This modification
is necessary in a simulation environment where the state
resolution is kept low enough to be tractable. Finally, for
the Preference Advice mechanism, actions are selected via
a ε-greedy policy, where a random action is selected with
probability 0.05, otherwise the highest valued action is se-
lected. The coefficient δ applied to the advice mechanism
reward in (20) is set to 2.5.

A series of experiments using the Preference Advice
mechanism have been formed to demonstrate its capabil-
ities. In the following sections, a novice robot refers to
a robot that has had zero prior experience at the task,
with zero initialized quality values. An expert robot is one
that has previously performed and learned from the given
task for a defined number of runs. Further, experts do not
perform policy updates during simulations to perform a
controlled analysis of the advice mechanism.

4.1 Experiment 1: Homogeneous Peers as Advisers

When agents are concurrently learning a task, a difficult
challenge is to use the partial knowledge of the other agents
in a beneficial way. The ability of the proposed mechanism
to do so is demonstrated by performing the foraging sce-
nario with 4 novice agents of the same type (chosen to be
S–NR). Each agent will inevitably learn different portions
of the state space before others, so the mechanism will
need to use the partial knowledge of others for the agent
to develop the appropriate policy more quickly. When
the advice mechanism is used, each agent should learn its
task more quickly when compared to the case without the
advice mechanism. This can be reflected by the simulation
time to complete the task (number of iterations) and total
team effort (number of actions) at each run, as well as
the average reward received by the team during each run.
We also compare the performance of the proposed mecha-
nism to the team performance using the Advice Exchange
algorithm [28].

61

4.2 Experiment 2: Heterogeneous Peers
as Advisers

We extend experiment 1 to use heterogeneous advisers to
demonstrate the mechanism’s performance with advisers
possessing different capabilities. Four robots, one of each
S–NR, S–R, F–NR, and F–R type, perform the foraging
scenario. In the case of non-rugged robots, the rugged
advisers will attempt to guide them through the rough
terrain, which they are incapable of moving through. Such
a scenario will illustrate that the biasing effect of the advice
in the proposed mechanism can influence an agent without
aggressively forcing it to perform detrimental actions.

4.3 Experiment 3: Expert Advisers of Varying
Skill Level

Due to the random nature of action selection (as well as
scenario initialization), certain agents may learn the task
faster or more slowly than others, resulting in the usefulness
of advice varying between agents. When advisers of the
same type, but different expertises, are made available
to the advisee, the advice mechanism must be capable of
recognizing varying levels of knowledge about the task.
To demonstrate this, a simulation is performed with one
novice S–NR robot having access to expert advisers of the
same type trained for 10, 50, and 100 runs. As all robots
are homogeneous, the advice mechanism must evaluate
advisers based on their skill at the task. The relevance of
each adviser is indicated by the similarity measure in (22).
The appropriate behaviour of the mechanism is expected
to attribute a greater similarity to the experts with more
experience as time proceeds.

4.4 Experiment 4: Expert Advisers of Varying
Capabilities

As previously stated, for heterogeneous robot teams, the
suitability of advice depends not only on the expertise
of the adviser but also on how similar the adviser is
to the advisee. When advisers of different types but
similar expertise are made available to the advisee, the
advice mechanism must still be capable of determining
the relevance of each adviser. To demonstrate this, a
simulation is performed with a novice S–NR robot having
access of expert advisers of each possible type (i.e., S–NR,
F–NR, S–R, and F–R), all previously trained for 100 runs.
In this scenario, the rugged advisers will attempt to guide
the robot across the rough terrain, which it is incapable of
doing, while the fast advisers will have learned a different
sequence of motions than the advisee due to the larger
movement during each action. Again, the relevance of
advisers is indicated by the similarity measure with (22).

4.5 Experiment 5: Supplement a Team of Novices
with a Partially Trained Adviser

An interesting use of advice for robot teams is when a group
of novice robots can have access to at least one expert
robot. Even if the expert robot is only partially trained, its

availability should still accelerate the learning process for
the entire team. To investigate this, 4 S–NR novice robots
perform the foraging scenario. Each novice has access
to the advice of its peers as well as a previously trained
S–NR robot. The supplementary expert adviser does not
participate in the scenario. The experiment is repeated
using the supplementary expert adviser, which is trained
for 10, 50, and 100 runs, to illustrate the effects of varying
levels of expertise made available in the early stages.

5. Results

In this section, results from the case study described in
Section 4. are presented and discussed. During each ex-
periment, the simulations are limited to 200 runs when
four robots are used, and 100 runs when one robot is used,
with each run limited to 4,000 iterations. The reduction
in runs when a single robot is used is due to the robot’s
performance converging more quickly when other robots
are not present to impede its motion. Each experiment
is repeated 15 times, and the data is averaged over all
15 trials. Additionally, a 10 point moving average (i.e.,
averaged over 10 runs) is applied to the averaged results
from the 15 trials.

Experiment 1, the use of homogeneous peers as ad-
visers with 4 S–NR robots, is considered first. Figure 2a
and 2b shows the simulation time (number of iterations)
and total effort (number of actions) required by the team
at each run to complete the task without advice, with
the Preference Advice mechanism, and with the Advice
Exchange mechanism for comparison. It is apparent from
the figures that the use of advice provides a consistent
reduction in the mean values of both simulation time and
total effort. This is especially evident during the transient
stage of learning, considered as the first 50 runs where
rapid convergence occurs. For both metrics, the use of
the Preference Advice mechanism provides a greater im-
provement than the Advice Exchange mechanism. The
benefit of Advice Exchange is most noticeable within the
first 100 epochs for simulation time and total effort but
becomes indistinguishable from the no advice case beyond
that. With the Preference Advice mechanism, the mean
values of simulation time and total effort appear to be
consistently less than both the Advice Exchange and no
advice cases for the first 100 runs, beyond which only the
reduction in simulation time is discernible.

The standard deviation of simulation time and total
effort at each run is presented in Fig. 3a and 3b. With
the Advice Exchange mechanism, there is no discernible
reduction in the standard deviation of either simulation
time or total effort. However, with the Preference Advice
mechanism, there is a clear reduction in the standard
deviation of both simulation time and total effort. This
reduction is most prominent during the transient stage
but is present for all 200 runs. Reducing the standard
deviation of simulation time and total effort with the
Preference Advice mechanism indicates that it increases
the consistency in the team’s performance at the task.
Again, this improvement is the result of utilizing multiple
advisers at each time step.

62

Figure 2. Performance with the Preference Advice mech-
anism, with the Advice Exchange mechanism, and with-
out advice, for four S–NR robots in experiment 1: (a)
simulation time and (b) total effort.

The ability of the Preference Advice mechanism to
incorporate advice from multiple advisers at each time step
is a key factor in the improvement in both the mean values
and the standard deviation of simulation time and total
effort. In the early stages of learning, a robot’s experience
in the state space will be sparse, hence several advisers
may need to be polled before one with sufficient experience
in the desired state is found. If only a single adviser can
be utilized at each time step, which is the case for Advice
Exchange, it severely limits the likelihood of obtaining
useful advice. Additionally, it is likely that each robot will
have some experience in the state, but not a large amount.
This will frequently prevent advice from being used if it
is required that the adviser’s performance or experience
exceeds the advisee’s (as evaluated by certain conditions).
Conversely, if an adviser’s input can be utilized, regardless
of the magnitude of their contribution, the benefits of
advice can be redeemed more frequently and provide a
more consistent performance improvement.

Figure 3. Standard deviation of performance at each run
for experiment 1: (a) simulation time and (b) total effort.

Lastly, the average reward of all robots in the team
is displayed in Fig. 4. Again, the use of advice appears
to provide a consistent improvement in the mean value of
reward obtained compared to without advice. Acquiring
reward in larger quantities indicates that the use of advice
encourages the selection of more favourable actions ear-
lier. Interestingly, the distinction between the Preference
Advice and Advice Exchange mechanisms is only apparent
within the first 50 runs.

The second experiment demonstrates the mechanisms
compatibility with heterogeneous advisers, where one of
each type of robot (i.e., S–NR, F–NR, S–R, and F–R)
performs the foraging scenario together. Hence, no two
robots performing the foraging task have identical capabil-
ities. The simulation time and total effort for the team to
complete the task at each run, with and without advice,
are shown in Fig. 5a and 5b. The comparison to Advice
Exchange is not made here, as it is not compatible with
heterogeneous advisers. Again, the mean values of simu-
lation time and total effort are consistently lower with the

63

Figure 4. Average reward obtained between four S–NR
robots in experiment 1.

Preference Advice mechanism than without advice, par-
ticularly during the transient stage of learning. In this
scenario, the advice from rugged robots would be to cross
the rough terrain, which non-rugged robots are incapable
of doing, while the advice from non-rugged robots would
be to go around the terrain, which is an inferior policy
for rugged robots. If unsuitable advice were being used,
we would expect to see an increase in iterations accompa-
nied by an increase in the standard deviation of mission
iterations, as a result of robots getting “stuck” performing
actions they are incapable of doing. However, we observe
a decrease in simulation time and total effort, as well as
a decrease in their standard deviations (Fig. 6a and 6b)
that is comparable to the reduction in standard deviation
from experiment 1 with homogeneous advisers. There-
fore, this is a strong indication that the Preference Advice
mechanism is compatible with heterogeneous advisers.

Such compatibility is due to the adviser influence
λt(s) in (17) being derived to ensure a conservative use of
advice that will not bias the advisee’s policy too strongly.
The average reward of all team members is shown in
Fig. 7, where a similar improvement as in experiment 1 is
observed.

Experiments 3 and 4 use virtual expert advisers that
do not participate in the task, where the single robot
performing the foraging task simply has access to their
policies. Such a scenario enables the use of advice over
time with the Preference Advice mechanism to be studied
under static adviser conditions, as well as demonstrating
how the Preference Advice mechanism could be used with
alternative advice sources, such as humans. In experiment
3, virtual expert advisers with different amounts of experi-
ence are made available to a S–NR robot. Figure 8 shows
the percentage which the Preference Advice mechanism re-
quests and accepts advice at each time step. As the robot
learns the task, the frequency in which advice is requested
rapidly diminishes. Reducing the use of advice over time is
a desirable property for real world robot teams, where un-
necessary communication and computational costs should

Figure 5. Performance with the Preference Advice mecha-
nism and without advice for four heterogeneous robots (S–
NR, F–NR, S–R, and F–R) in experiment 2: (a) simulation
time and (b) total effort.

be avoided. The acceptance of advice at each time step
increases to a peak near run 30 and steadily diminishes
thereafter. The increase in advice acceptance between run
1 and run 30 indicates that the Preference Advice mecha-
nism quickly learns the value of advice, while the decline
afterwards paired with the small request occurrence indi-
cates that it also becomes more selective with advice over
time. The relevance of each adviser, as measured by (22),
is displayed in Fig. 9. The relevance of an adviser increases
with its experience, which is the appropriate behavior, re-
sulting in the adviser with the most experience being polled
first for its advice. Therefore, despite the mechanism be-
ing not directly learned the relevance of each adviser, the
ranking scheme implemented has worked successfully.

Experiment 4 uses expert advisers differing in terms
of capabilities. A S–NR robot having access to a virtual
expert adviser of each type (S–NR, F–NR, S–R, and F–R)
is used for the simulation. The relevance of each type of

64

Figure 6. Standard deviation of performance at each run
for experiment 2: (a) simulation time and (b) total effort.

adviser, as determined by (22), is shown in Fig. 10. The
two advisers of the slow type, namely S–NR and S–R,
appear to be equally the most relevant, while the advisers
of the fast type, F–NR and F–R, have similar lower, yet
similar, levels of relevance.

The Preference Advice mechanism differentiates be-
tween the policies of different adviser types, although the
results indicate that the difference in policies between
rugged and non-rugged robots is smaller than the differ-
ence between fast and slow robots. The results from this
experiment highlight the importance of having an advice
mechanism capable of determining the relevance of ad-
visers on its own, as prior to operation the similarity in
policies may not be obvious enough to generate static rules
regarding the use of advisers.

Figure 11 shows the number of iterations for the sin-
gle S–NR robot to complete the foraging task without
advice, with advice from advisers of varying skill lev-
els and with advice from advisers of varying capabilities.
Both variations in advisers provide similar improvements

Figure 7. Average reward obtained between four het-
erogeneous robots (S–NR, F–NR, S–R, and F–R) in
experiment 2.

Figure 8. Percentage which advice is requested and used
during each run in experiment 3.

in simulation time, especially during the transient stage of
learning. Again, as the supplementary expert adviser is a
virtual adviser, it could also be a human providing advice
to the team. Such a reduction in iterations with a virtual
expert adviser can provide significant benefits to real world
robot teams, where the use of a single human can greatly
reduce the time to learn the task at hand, as well as re-
duce the operational time for the robots, and hence costs.
Based on the adviser relevance values, it appears that for
experiment 3 the 100 run expert (of the same type as the
advisee) was consistently polled first. Additionally, for
experiment 4, the relevance of the S–NR and S–R robots
were the largest and nearly equal, indicating that those
two advisers were consistently polled first. These two ob-
servations imply that having two expert advisers with high
relevance is not distinctly more beneficial than having a
single expert adviser available.

65

Figure 9. Relevance for advisers of varying skill in experi-
ment 3.

Figure 10. Relevance of advisers of varying capabilities in
experiment 4.

Lastly, we consider experiment 5, where a team of four
S–NR robots use peers as advisers, plus one supplementary
expert adviser. The simulation time for each case of
adviser expertise (10, 50, and 100 runs) is shown in Fig.
12, as well as peer only advice (identical to experiment 1)
and no advice for comparison. Given the large number
of curves on the plot, for clarity, only the simulation
time during the transient stage is shown. Relative to
peer only advice, the supplementary adviser provides an
additional reduction in simulation time, with the advisers
having 50 and 100 runs of experience providing the most
improvement. Despite the improvement obtained from
having a supplementary expert adviser in addition to peers
being relatively small, it does indicate that all four robots
are successfully able to leverage the additional source of
advice early in the learning process. Similar to the balance

Figure 11. Simulation time for one S–NR robot with advis-
ers of varying skill (experiment 2) and advisers of varying
capabilities (experiment 4), compared to without advice.

Figure 12. Simulation time for four S–NR robots with a
supplementary expert adviser in experiment 5, compared
to peer only advice and no advice.

between exploration and exploitation with reinforcement
learning, there is a similar balance between exploiting an
experienced adviser and enabling a robot to experience
a sufficient amount of exploration. The policy of the
expert adviser with 100 runs of experience could be directly
adopted, but it may completely prevent the novice robots
from experiencing large areas of the state space.

6. Conclusion

This paper has presented the Preference Advice mechanism
for heterogeneous robot teams. The mechanism has the
capability to decide when advice should be requested and

66

accepted, uses multiple advisers at each time step, is
compatible with heterogeneous advisers, and reduces the
use of advice over time. Further, advice is incorporated
into the advisee’s policy via a method, which guarantees
convergence to an optimal policy.

Experiments were performed with a simulated team
of robots performing a foraging task. When all robots
have zero prior experience at the task, the mechanism ac-
celerates the learning process, in comparison to without
advice, by reducing the number of iterations for the team
to complete the task during the initial stages of learn-
ing. This improvement in performance also exceeds the
improvement experienced with an alternative advice mech-
anism that uses a form of direct policy adoption. Further,
the mechanism is compatible with advisers having differ-
ent capabilities than the advisee and also appropriately
ranks advisers based on their similarity to the advisee
and experience. Lastly, the Preference Advice mechanism
was shown to provide a reduction in iterations for a team
of robots to complete a task when a virtual expert ad-
viser is available. This highlights the importance of ad-
vice for robot teams, where the risk of an entire team
performing potentially hazardous exploration can be re-
duced by providing human advice, or pre-training a single
robot.

Future work would include applying the Preference
Advice mechanism to scenarios with increasing amounts of
robot heterogeneity, as well as more complex environments
that more closely mimic real world applications of robot
teams.

References

[1] C.J.C.H. Watkins, Learning from delayed rewards, Ph.D. dis-
sertation, King’s College, Cambridge, UK, May 1989. Avail-
able: http://www.cs.rhul.ac.uk/∼chrisw/new_thesis.pdf

[2] M.J. Matarić, Reinforcement learning in the multi-robot do-
main, Autonomous Robots, 4 (1), 1997, 73–83.

[3] Y. Wang, P.G. Siriwardana, and C.W. de Silva, Multi-robot
cooperative transportation of objects using machine learning,
International Journal of Robotics and Automation, 26 (4),
2011, 369–375.

[4] J. Girard and M.R. Emami, Concurrent Markov decision
processes for robot team learning, Engineering Applications of
Artificial Intelligence, 39, 2015, 223–234.

[5] Y. Zhang and C.W. de Silva, Rsmdp-based robust q-learning
for optimal path planning in a dynamic environment, Inter-
national Journal of Robotics and Automation, 31 (4), 2016,
290–300.

[6] C. Finn, X.Y. Tan, Y. Duan, T. Darrell, S. Levine, and
P. Abbee, Learning visual feature spaces for robotic manipula-
tion with deep spatial autoencoders, http://arxiv.org/abs/1509.
06113

[7] H. Yang and J. Liu, Minimum parameter learning method
for an n-link manipulator with nonlinear disturbance observer,
International Journal of Robotics and Automation, 31 (3),
2016.

[8] C. Boutilier, Planning, learning and coordination in multiagent
decision processes, Proc. of the 6th Conf. on Theoretical Aspects
of Rationality and Knowledge, Amsterdam (San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc. 1996) 195–210.

[9] C.E. Rasmussen and C.K.I. Williams, Gaussian processes
for machine learning (Adaptive computation and machine
learning) (Cambridge, MA: The MIT Press, 2005).

[10] A.Y. Ng, D. Harada, and S.J. Russell, Policy invariance under
reward transformations: Theory and application to reward

shaping, Proc. of the Sixteenth Int. Conf. on Machine Learning,
Bled, Slovenia (San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999) 278–287.

[11] J. Kober and J. Peters, Reinforcement learning in robotics: A
survey (Berlin, Heidelberg: Springer, 2012) 579–610.

[12] A.S. Polydoros and L. Nalpantidis, Survey of model-based
reinforcement learning: Applications on robotics, Journal of
Intelligent and Robotic Systems, 86 (2), 2017, 153–173.

[13] E. Wiewiora, G. Cottrell, and C. Elkan, Principled methods for
advising reinforcement learning agents, Proc. of the Twentieth
Int. Conf. on Machine Learning, Washington, DC (Palo Alto,
CA: AAAI Press, 2003) 792–799.

[14] Y. Zhan, H. Bou-Ammar, and M.E. Taylor, Theoretically-
grounded policy advice from multiple teachers in reinforcement
learning settings with applications to negative transfer, Proc.
of the Twenty-Fifth Int. Joint Conf. on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 2016, 2315–2321.

[15] L. Ng and M.R. Emami, Concurrent individual and social
learning in robot teams, Computational Intelligence, 32 (3),
2016, 420–438.

[16] R. Bellman, Dynamic Programming, 1st edn (Princeton, NJ,
USA: Princeton University Press, 1957).

[17] C.J. Watkins and P. Dayan, Technical note: Q-learning,
Machine Learning, 8 (3), 1992, 279–292.

[18] G.A. Rummery, Problem solving with reinforcement learning,
Ph.D. dissertation, University of Cambridge, 1995.

[19] J. McCarthy, Programs with common sense, Semantic Infor-
mation Processing (Cambridge, MA: MIT Press, 1968) 403–
418.

[20] M.E. Taylor and P. Stone, Transfer learning for reinforcement
learning domains: A survey, Journal of Machine Learning
Research, 10 (1), 2009, 1633–1685.

[21] G. Boutsioukis, I. Partalas, and I. Vlahavas, Transfer learn-
ing in multi-agent reinforcement learning domains (Berlin,
Heidelberg: Springer, 2012) 249–260.

[22] L. Torrey, J. Shavlik, T.Walker, andR.Maclin, Skill acquisition
Via transfer learning and advice taking (Berlin, Heidelberg:
Springer, 2006) 425–436.

[23] S.D. Whitehead, A complexity analysis of cooperative mecha-
nisms in reinforcement learning, Proc. of the Ninth National
Conf. on Artificial Intelligence (AAAI-91), Anaheim, 1991,
607–613.

[24] L.-J. Lin, Programming robots using reinforcement learning
and teaching, Proc. of the Ninth National Conf. on Artificial
Intelligence - Volume 2, Anaheim, CA (Palo Alto, CA: AAAI
Press, 1991) 781–786.

[25] R. Maclin, J.W. Shavlik, and P. Kaelbling, Creating advice-
taking reinforcement learners, Machine Learning, 1996, 251–
281.

[26] R.J. Malak and P.K. Khosla, A framework for the adaptive
transfer of robot skill knowledge using reinforcement learning
agents, IEEE Int. Conf. on Proc. 2001 ICRA, Seoul, South
Korea, vol. 2, 2001, 1994–2001.

[27] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild,
Giving advice about preferred actions to reinforcement learners
via knowledge-based kernel regression, Proc. of the 20th Na-
tional Conf. on Artificial Intelligence - Volume 2, Pittsburgh,
Pennsylvania (Palo Alto, CA: AAAI Press, 2005) 819–824.

[28] L. Nunes and E. Oliveira, Cooperative learning using advice
exchange (Berlin, Heidelberg: Springer, 2003) 33–48.

[29] L. Nunes and E. Oliveira, Exchanging advice and learning to
trust, Lecture notes in computer science vol. 2782 (Berlin:
Springer-Verlag, 2003) 250–265.

[30] S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvári,
Convergence results for single-step on-policy reinforcement-
learning algorithms, Machine Learning, 38 (3), 2000, 287–308.
Available: http://dx.doi.org/10.1023/A:1007678930559

[31] T. Jaakkola, M.I. Jordan, and S.P. Singh, On the convergence of
stochastic iterative dynamic programming algorithms, Neural
Computing, 6(6), 1994, 1185–1201.

67

Biographies

Steven Daniluk obtained his
Bachelor’s degree in Aerospace
Engineering from Carleton Uni-
versity in 2015, and joined the
Aerospace Mechatronics group at
the University of Toronto Insti-
tute for Aerospace Studies for his
Master’s studies. His research
thesis was focussed on robot team
learning. He graduated in 2017,
and has been a Robotics Engineer
at Marble since then.

M. Reza Emami is the Found-
ing Chair of Onboard Space Sys-
tems at the Lule̊a University of
Technology (Sweden). He has also
been the Director of Aerospace
Mechatronics group and Coordi-
nator of Aerospace and Design
Laboratories at the University of
Toronto Institute for Aerospace
Studies (Canada) since 2001. His
research focuses on concurrent en-
gineering of multidisciplinary sys-

tems, such as miniaturized spacecraft and robotic systems,
with applications including concurrent base-arm control
of space manipulators, satellite formation flying, asteroid
exploration and mining, intelligent heterogeneous robot
teams, and reconfigurable manipulators. He is the Asso-
ciate Editor of the International Journal of Advanced
Robotic Systems.

68

