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ABSTRACT 
Although the application of Symmetrical Components to 
time-dependent variables was introduced by Lyon in 
1954, for many years its application was essentially 
restricted to electric machines. Recently, thanks to its 
advantages, the Lyon transformation is also applied to 
power network calculation. In this paper, time-dependent 
symmetrical components are applied to study the dynamic 
analysis of asymmetrical faults in a power system. The 
Lyon approach allows calculation of the maximum values 
of overvoltages and overcurrents under transient 
conditions and allows studying the network under non-
sinusoidal conditions. Finally, some examples with 
longitudinal asymmetrical faults are illustrated 
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1.  Introduction 
 
The general Fortescue Symmetrical Components 
Transformation (SCT)  [1] −[2] is formalized in phasor 
terms, so it can only be used to study steady-state 
conditions that follow the fault transient condition. In this 
way, the maximum values of overvoltages and 
overcurrents can only be calculated in an approximate 
way by means of corrective factors [3]. 
Recently, the space–vector transformation – used in 
machine vector control – has been applied to power 
system analysis, too [4], [5]. Currently, network theory 
and complex transformation suggest that the study of 
asymmetrical faults can be carried out by means of 
instantaneous sequence components [6]-[9].  
As a matter of fact, by using the same topological 
approach of the SCT, it is possible to directly analyze the 
faulty network by differential equations that represent the 
faults not only in steady-state conditions but also under 
transient conditions. 
As shown by W. Lyon [10],[11], the formal aspects of the 
procedure can be summarized by the following points: 
• the phasors that represent phase- and sequence- 

variables, are substituted by time-dependent 

functions, so that the concept of Fortescue sequences 
can be generalized to the concept of instantaneous 
sequences; 

• the Fortescue matrix [ ]S  remains the same, and 
hence the method confirms the SCT topological and 
modal-analysis approach [11, 12]; 

• the phasor operator jω is replaced by the derivative 
operator p /d dt= . Under this assumption, 
differential analysis is required and depends on the 
Cauchy initial conditions; and 

• the sequence impedances are converted form ( )Z jω  
to generalized form z(p), maintaining the same 
circuital and topological meaning. 

This time-domain analysis is characterized by three 
fundamental features. The first is an applicative one, 
which regards the ability to calculate - without the use of 
corrective coefficients - the maximum values of 
overvoltages and overcurrents during the transient 
conditions. This is very important for circuit-breaker 
sizing and the evaluation of the electro-dynamic force 
between busbars and in transformer windings. The second 
characteristic concerns the possibility of studying not only 
sinusoidal, but also non sinusoidal sources. The last 
characteristic regards the formal and methodological 
aspects introduced by using the Lyon approach. By means 
of the Lyon approach, the procedures of dynamic analysis 
of the network can be unified. In addition, by substituting 
the SCT with the Lyon approach, fault analysis is carried 
out by means of state equations that can be integrated by 
classic procedures based on system analysis and the graph 
approach. The state-equation solutions, can be expressed 
in literal form by means of analytical formulations if the 
network is linear and time-invariant. 
The relations between real and complex transformations, 
steady-state phasors and well-known sequence networks 
are given and illustrated through the use of an example 
with an asymmetrical fault in [6]. The use of dynamic 
phasors together with space-vectors - incorporating the 
frequency information – in power system analysis is 
presented in [7] and [8]. To complete these studies in the 
following, a systematic analysis of the asymmetrical 
faults is developed and deeper investigated both from the 
theoretical and applicative points of view, giving some 
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important observations that are very useful to achieve the 
numerical analysis and to better understand the results 
obtained by using industrial software packages. 
The Lyon approach to study transient and steady-state 
conditions of transversal and longitudinal faults is 
developed  in terms of the following scheme: in Section 2, 
the Lyon Transformation is recalled and its link with SCT 
is investigated. In Section 3, the application of the Lyon 
method to the study of asymmetric transversal and 
longitudinal faults is formalized and some remarks 
concerning the connection conditions and the use of state-
equation approach are put in evidence; furthermore the 
equivalent model of each fault is calculated. Finally, in 
Section 4, some numerical examples emphasize the 
validity of the proposed approach by comparing the 
obtained results with those derived by the SCT method. 
 
 
2.  The Lyon Transformation 
 
Considering an arbitrary time function three-phase set 
{wa(t), wb(t), wc(t)}, the Lyon transformation gives the 
following decomposition (where exp( 2 / 3)= jα π ):  
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from which it is possible to observe that the matrix [ ]S  is 
formally the same for both SCT and Lyon transformation. 
On the other hand, the functions subjected to the Lyon 
Transformation assume a generic time trend.  
Taking into account that  
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Therefore, it is possible to define, starting from a generic 
three-phase set in time domain, the instantaneous 
symmetric components named, respectively, zero-, 
positive-, and negative-sequences. The zero-sequence 
component ( )0w t  is always real. The negative-sequence 

component ( )w t−  is the complex conjugate of the 

positive sequence component ( )w t+ .  
Observing eqs. (1) and (2) it is possible to deduce that the 
Lyon method proposes, time by time and referring to a 
generic waveform in time domain, the same topological 
procedures just used with SCT. Moreover, the Lyon 
transformation, applied to a generic sinusoidal three-
phase set, gives the same results provided by the SCT.  
Furthermore, the positive Lyon vector satisfies the 
following identity: 

       ( ) ( ) ( ) ( )2 2 j t
dqw t w t w t e ϑ

αβ+ = ⋅ = ⋅ ⋅                 (3) 

and hence it is linked to both Clarke ( )w tαβ and Park 
( )dqw t  vectors, except for a trivial proportionality factor.  

The Lyon transformation, in the context of the modal 
analysis procedure of the actual three-phase theory, 
unifies all transformations normally used for dynamic 
analysis of power networks. In particular - as 

( ) ( )w t w t∗
− +=  - the real and complex pair of time 

functions 0 ( )w t  and ( )w t+  is totally representative of the 
generic three-phase set of real time functions {wa(t), wb(t), 
wc(t)}.  
The instantaneous power, in terms of the Lyon 
component, is [13]: 
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3.  Lyon Approach to the Study of  
     Asymmetrical Faults 
 
Lyon decomposition in instantaneous sequence 
components allows the use of the SCT topological 
procedures for studying asymmetrical faults that can 
occur in a power network, by using the Substitution 
Theorem and the Superposition Principle as in SCT 
[12],[14].  
Some fundamental remarks about the application to the 
fault analysis of the Lyon method rather than the SCT are 
discussed in the following sections.  
 
3.1  Considerations about the transformed connection  
       conditions  
 
To perform the fault analysis it is necessary, in agreement 
with Fortescue SCT, to calculate the instantaneous 
sequence networks connection corresponding to the 
analysed fault configuration starting from the phase 
circuit fault conditions.  
The Lyon transformed fault conditions show how to 
handle both real- and complex- time functions, while this 
is not possible using Fortescue analysis. It is important to 
verify that the connection condition obtained starting 
from the real condition are coherent with respect to the 
definition of an instantaneous sequence component given 
by (2).  
As an example, in the case of a single-phase-to-ground 
fault, the following link relations are obtained: 

      
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

0 03 pf

i t i t i t
v t v t v t z i t

+ −

+ −

= =⎧⎪
⎨ + + = ⋅⎪⎩

        (5) 

where zf (p) is the fault impedance. The first line of (5) 
shows that the two current Lyon vectors, which are 
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conjugates, have to be real in order to obtain the zero-
sequence current. Moreover, from the second line of (5): 

         
( ) ( ) ( ) ( ) ( )

( ){ } ( ) ( )
0 03

2 Re 3
f

f o

v t v t v t z p i t

v t z p i t
+ −

+

= − − + ⋅

= − + ⋅
 (6) 

Eq. (6) confirms that v0(t) is a real time function, too.  
Similar observations can be applied to the other fault 
conditions. 

 
3.2 The state-matrix approach 
 
The Lyon dynamic analysis of asymmetrical faults can be 
performed by using the state-matrix approach. It is 
divided into three distinct stages. In the first step the 
power system, where the fault occurs, is represented by 
the appropriate equivalent sequence networks. From 
these, the Lyon state variables (voltages across the 
capacitors and current flowing in the inductors) are 
deduced and collected in the Lyon state-vector [x]. 
In the second step, by means of the system and 
topological procedures of network theory [14], the 
mathematical model of the fault’s dynamics is deduced. 
Assuming that the constitutive relations are linear and 
time-invariant, it is a priori formalized as: 

           
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

d x A x B u
dt
y C x D u

⎧ = ⋅ + ⋅⎪
⎨
⎪ = ⋅ + ⋅⎩

      (7) 

where the input [u(t)] and the network variables [y(t)] 
Lyon vectors are present. The [y(t)] vector can be 
regarded as the output of the system. 
The solution of (7) is well-known and can be obtained in 
closed form. In fact, knowing the initial values of state 
variables (at time t=t0), it is possible to assume the 
following expression [14],[16]: 

    [ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ]
0

0( ) ( ) ( )o

t
A t t A t

t

x t e x t e B u dξ ξ ξ⋅ − ⋅ −= ⋅ + ⋅ ⋅ ⋅∫    (8) 

where the first term represents the solution with zero 
inputs and the second term represents the zero state 
solution. This last term is calculated considering the 
general sources [u(t)] expressed in the time domain. In the 
particular case of sinusoidal inputs, it corresponds to the 
results also obtained in the phasor domain with SCT when 
the transient is finished.  
It is important to underline that the dynamics of the fault 
depends on the state fault matrix [A], and its elements 
depend on the sequence parameters related to the type of 
fault that occurs in the considered power network, and on 
the initial conditions [x(t0)] analyzed in the following 
paragraph. The eigenvalues of the fault matrix [A] depend 
on the type of fault and characterize the dynamic of the 
power system during the fault. 
Finally, in the third stage of the study, the network 
variables [y(t)] are calculated from the second line of (7). 

The network variables are usually Lyon voltages [v(t)] 
and currents [i(t)] expressed in the time domain. Eq. (1) 
allows the derivation of the fault dynamics expressed in 
phase quantities. 

 
3.3 The role of initial conditions 
 
The zero-state network represents the simpler case for a 
dynamic analysis. In fact, in this case, the inductances and 
the capacitances are in zero-state conditions. 
If the fault occurs in a non-zero state network, the state 
variables assume a non-zero initial state [x(t0)]=[x0]; in 
this case, the voltage vC(t) across a capacitor C and the 
current iL(t) flowing in an inductor L result to be: 

                   

( ) ( )

( ) ( )
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t
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t
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t

v t V i d
C
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ξ ξ

ξ ξ

⎧
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⎪
⎨
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⎩

∫

∫
       (9) 

The reactive elements can be considered in the dynamic 
analysis with an initial zero state condition simply by 
linking them with a generator that represents the initial 
conditions (see Fig. 1).  

0CV

1
Cp

0LI

Lp
'( )Cv t

( )Ci t

( )Lv t

( )Li t

(a) (b)

1
Cp

Lp
( )Cv t ( )Lv t

( )Ci t

  00C Cv V �   00L Li I �

( )Li t

( )Cv t

'( )Li t

 
Fig. 1.  Method that can be used to include the initial condition of the 

state variables in the proposed approach; case of the capacitance (a) and 
of the inductance (b). It is represented in the general case, and it is valid 

for all the instantaneous sequence (+, − and 0). 
 
In this way, the capacitor must be connected in series with 
a voltage generator (equal to VC0) and the inductor must 
be connected in parallel with a current generator (equal to 
IL0). The new state variables are represented by the 
voltage v’C(t) across the capacitor C and the current i’L(t) 
flowing in the inductor L, respectively.  
Eq. (8) becomes: 

                    [ ] [ ] ( ) [ ] [ ]
0

''( ) ' '( )
t

A t

t

x t e B u dξ ξ ξ⋅ −= ⋅ ⋅ ⋅∫  (10) 

where [A’], [B’] and [u’(t)] are calculated considering the 
new network.  

This method is particularly important and useful in 
power network analysis where some inductances 
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(capacitors) can be connected in series (in parallel) with 
different initial conditions. 
 
3.4 Fault equivalent networks  
 
The equivalent sequence networks for each fault type are 
reported in Table 1. Examination of Table 1 reveals that 
the instantaneous sequence network connections for the 
different fault types are equal to that obtained by using 
Fortescue SCT. This is in agreement with the fact that the 
Lyon and Fortescue transformations use the same 
transformation matrix [ ]S . In the time-differential 
domain it is possible to use the same phasor expression 
only by substituting the jω  factor with the p operator. 
The complex impedance ( )Z jω  becomes the real 
impedance ( )pz  [15]. Nevertheless, the Lyon 
transformation is of greater generality than the Fortescue 
transformation: Lyon acts on the time domain, not only in 
the phasor domain. The SCT can be considered as a 
particular case of the more general instantaneous 
sequence components approach. 

The results shown in Table 1 and the listed remarks 
complete the study presented in [6] and [8] analyzing in a 
systematic way all the asymmetrical faults and presenting 
the equivalent models of the faults. 

Furthermore, Table 1 data together with the 
aforementioned remarks are very important not only from 
the theoretical point of view, but, as a matter of fact, these 
results can be very useful also to the power system analyst 
to verify the results obtained by using industrial software 
packages.  

 
 

4.  Applicative Case 
 
The Lyon approach to studying power system faults 
presented in this paper is now applied to perform 
transversal fault analysis in an Italian exiting power 
network (Fig. 3). The network under analysis is 
constituted by a high voltage external grid EG, a 
transformer T, a line L, and a medium voltage load LD. 
The faults occur on the medium voltage busbars.  
To set up the network circuit, the line L is represented by 
a “Γ” cell, while the transverse parameters of the 
transformer T are neglected. Furthermore, the transformer 
is shell core type, which means that the zero-sequence 
flux component flows in the low reluctance core. 
Consequently, the zero-sequence impedance is very high. 
The load is represented by a simple set of impedances. 
The neutral condition of the external high voltage grid EG 
is grounded, while the medium voltage side is not 
grounded. The network data are reported in Table 2. 

 
 
 
 
 
 
 

Table 1 
Instantaneous Sequence Network Connection 
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0Bv

Bv 

Bv 

0 0 00v

0i

v 

i
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Faults Instantaneous Sequence networks connections

Single-Phase-
to-ground

Two-Phase-to-
ground

Two-Phase

Two-Phase-to-
ground

Three-Phase

Single-phase-
opening

Two-phase-
opening

 
 

EG T

10 km

15 kV LDL

132 kV

 
Fig. 3. One line diagram. 
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Table 2 
Numerical parameters of the network in Fig. 8 

Elements Data 

Ex
t. 

G
rid

 Nominal voltage 132 kVnV =  

Short-circuit current (HV side) ( )3 12 kAkHVI =  

Short-circuit power factor ( )cos 0.1k =φ  

Tr
an

sf
or

m
er

 

Connection 0Y y−  

Nominal power 25 MVAnA =  

Nominal voltage (HV side) 132 kVnHVV =  

Nominal voltage (MV side) 15 kVnMVV =  

Short-circuit voltage 15 5scv = . %  

Short-circuit power 35 kWscP =  

No-load current 0 1%i =  

No-load power 0 26 kWP =  

Li
ne

 

Nominal voltage 15 kVnV =  

Length 10 kmL =  

Resistance 1 0.226 Ω/kmr =  

Inductance 1 0.35Ω/kmx =  

Capacitance 1 9.65 nF/kmc =  

Zero-sequence resistance  0 0.371Ω/kmr =  

Zero-sequence inductance 0 1.536 Ω/kmx =  

Zero-sequence capacitance  0 4.51 nF/kmc =  

Lo
ad

 

Nominal voltage 15 kVnV =  

Active power 9 MWcP =  

Reactive power 3.5 MVArcQ =  

 
4.1 Sequence networks and initial conditions 
 
The instantaneous sequence networks are shown in Fig.4, 
where the quantities indicated are the pu parameters 
calculated starting from the data reported in Table 2. 
Based on the hypothesis about the type of load and the 
neutral point connection, the instantaneous zero-sequence 
network is composed only by the line zero-sequence 
parameters.  

The initial condition computation is made considering 
the network under the sinusoidal condition before the 
fault occurs. The state quantities result: 

                   

0.165 0.0921 . .

0.1649 0.0923 . .

0.5619 0.02685 . .

EG T

L LD

C

I I j p u

I I j p u

V j p u

= = −

= = −

= −

           (11) 

The Lyon quantity ( )0w t , ( ),  ( )w t w t+ −  can be 
expressed as follows: 
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1 2
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1
2 j
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w S e We

w

ϕ

ϕ

ϕ α
αϕ

−
+

−

⎡ ⎤ ⎧ ⎫⎡ ⎤
⎢ ⎥ ⎪ ⎪⎢ ⎥⎡ ⎤= ⋅ℜ ⋅ ⋅⎢ ⎥ ⎨ ⎬⎢ ⎥⎣ ⎦⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

              (12) 

where φ0 represents the a phase angle (respect to the real 
axis) in which the fault occurs. 
 

, ( )e t 

, ( )i t 

, ( )v t 

EGr

EGl

Tr Tl

Lc

,Cv  

Lr Ll LDr LDl

,LDi  

,EGi  

,Ti  

,Li  

0v

0i

0c 0Lr 0Ll

 
Fig. 4. Positive-, negative-, and zero-sequence instantaneous sequence 
networks for the transversal fault analysis of the network depicted in 

Fig.3. 
 
4.2 Single-phase-to-ground fault 
 
In this case, the sequence networks are connected in 
series. The fault does not change the line current values 
very much. It is possible to observe only a very small 
transient in the first instants of the fault transient. The 
fault current instead presents itself in the first instant high 
frequency oscillations superimposed to the fundamental 
network frequency (50 Hz). These oscillations with high 
amplitude decay very rapidly. The fault current is very 
low because the network is not grounded. Thus, the 
unique path to the ground is represented by the line 
capacitors.  
All the quantities are, at the end of the transient, 
sinusoidal. Table 3 shows the maximum value of the line 
currents and voltages calculate by using Fortescue SCT 
and Lyon ISCT, which are equal. 

 
Table 3 

Comparison between maximum value evaluated by SCT and ISCT 
 Fortescue Lyon 

{ }max Li  pu 0.2673 0.2673 

{ }max av  pu 0.1236 0.1236 

{ }max bv  pu 1.2543 1.2545 

{ }max cv  pu 1.3219 1.322 

{ }max Fi  pu. 2.648·10-4 2.6421·10-4 

 
4.3 Two-phase fault 
 
In this case, the positive- and negative- instantaneous 
sequence networks are connected in parallel, the zero-
instantaneous sequence network is open as shown in Fig. 
5. Fig. 6 shows the line current movement during the fault 
transient calculated considering φ0 = 0. In this case, it is 
possible to note a high peak in the considered quantities. 
In particular, the phases b and c show a peak in the first 
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instants equal to 1.5141 pu and 1.3826 pu respectively. It 
is important to note that these peak values cannot be 
calculated by using Fortescue analysis. 
In this kind of fault, the line currents assume large values 
in the first instant of the fault. The maximum value 
depends on the phase angle φ0. In Table 4 the maximum 
value reached by the line phase currents ( ( ){ }max La b ci t, , ) 
and the ratio between this value and the maximum value 
under the pre-fault sinusoidal condition ( 2LMax LI I= ⋅ ) 

calculated for different phase angles 0ϕ  are reported. The 
maximum value is reached for φ0=18°: the ratio 
( ( ){ }max La b c LMaxi t I, , / ) is close to 5.70. 

0v

0i

0c 0Lr 0Ll

( )e t

( )i t

( )v tEGr

EGl

Tr Tl

Lc
Cv 

Lr Ll

LDr

LDl

LDi 
EGi 

Ti  Li 

( )e t

EGr

EGl

Tr Tl

Lc
Cv 

Lr Ll

EGi 

Ti  Li  ( )i t

( )v t
LDr

LDl

LDi 

 
Fig. 5. Instantaneous sequence networks connection for the analysis of 

two-phase to ground fault. 
 
Fig. 7 shows the Lyon vector ( )Li t+  in the complex 
plane. During the first fault transient instant the current 
reaches its instantaneous maximum value. At the end of 
the transient, in steady-state but in asymmetric condition, 
the current ( )Li t+  describes an ellipse. 

 
Fig. 6. Two phase fault: line phase currents transient calculated with 

φ0=0. 

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Re

Im

( )Li t+

 
Fig. 7. Two phase fault: Lyon time vector ( )Li t+  with φ0 = 18°. 

 
Table 4 

Current maximum values as a function of 0ϕ  

[ ]0ϕ °  ( ){ } [ ]max  pu, ,La b ci t  ( ){ }max La b c LMaxi t I, , /

-90 1.2859 4.8109 
-80 1.3126 4.9108 
-60 1.372 5.1331 
-40 1.4323 5.3587 
-20 1.4841 5.5525 
-10 1.5027 5.6221 
0 1.5141 5.6647 
10 1.5168 5.6748 
20 1.5094 5.6471 
40 1.4577 5.4537 
60 1.3505 5.0526 
80 1.2619 4.7212 

 
The two-phase-to-ground fault analysis leads to very 
similar results. It depends on an ungrounded network that 
has a very high neutral to ground impedance. 
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4.4 Three-phase fault 
 
In this case the instantaneous sequence networks are 
short-circuited at the point where the fault occurs. As for 
the two-phase fault case, the maximum value reached by 
the line phase currents ( ( ){ }max La b ci t, , ) and the ratio 
between this value and the maximum value under the pre-
fault sinusoidal condition ( 2LMax LI I= ⋅ ) are calculated 

for different phase angles 0ϕ . In this case, the peak value 
achieved in the first instants is 1.24 times the maximum 
value of the current in the final steady-state condition. 
The example here presented confirms that the use of time-
dependent symmetrical component in network 
calculations has several advantages with respect to the 
SCT and simulation software: the Lyon transformation 
allows transient calculations; the simple relation with 
their steady-state phasors facilitates the interpretation of 
the results by the well-known steady-state phasor theory 
and by using complex plane diagrams. 
Finally, it is important to underline that network 
component data are usually available in these coordinates. 
 
 
5.  Conclusion 
 
The use, in the time-domain analysis, of Lyon 
transformation of asymmetric transversal faults is shown. 
The proposed approach allows the derivation of the Lyon 
state model of the faulted network and of the transient and 
steady state voltages and currents of interest.  
Thanks to the Lyon approach, the peak values reached in 
the first instants of the fault by the network voltages and 
currents can be calculated. Furthermore, the complex 
vectors allow the use of the state equations approach to 
perform the network dynamic analysis and provide simple 
relations to steady-state phasors and their rms values. The 
Lyon approach can also be used for derivation of 
equivalent circuits that characterize the different faults 
and – thanks to the state-matrix approach – its 
eigenvalues. These information can be very useful to the 
power system analysts before starting their analysis by 
software package simulations. 
The SCT, traditionally employed for fault analysis, can be 
considered as a particular case of the more general 
instantaneous sequence components approach proposed 
by Lyon. 
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