
 
 
 

FORECAST OF THE HEAT DEMAND OF A DISTRICT HEATING SYSTEM 
 

 
Prof. Dr. Wolfgang Schellong (1), Dipl.-Ing. Francois Hentges (2) 

(1) Cologne University of Applied Sciences, Betzdorfer Str. 2, D50679 Cologne, Germany 
wolfgang.schellong@fh-koeln.de 

(2) Hentges GmbH, Am Meilenstein 4, D53909 Zülpich, Germany 
francois.hentges@hentges.biz 

 
 

ABSTRACT 
The paper describes different mathematical modeling 
methods for the heat demand forecast of a district heating 
system. Mainly the regression analysis and the design of 
neural networks are tested on the basis of real 
consumption data of the heating system. The forecast 
tools are necessary to control and optimize the operating 
schedule of a cogeneration plant in combination with the 
district heating system. The heat demand forecast 
implemented in an energy management system helps to 
increase the energy efficiency and supports the 
sustainable energy development. An analysis of the 
consumption data and of the main influence factors on the 
heat demand is necessary in order to obtain suitable 
forecast models. The paper describes the data 
management as well as the process of the mathematical 
modeling. The design of clusters depending on seasonal 
impacts and the influence of climate factors are 
investigated. Linear multiple regression models are 
compared with individually designed neural networks. 
The experiences of the application of both methods to real 
data sets are presented. 
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1. Introduction 
 
Much of the energy generated today is produced by large-
scale, centralized power plants using fossil fuels (coal, oil 
and gas), hydropower or nuclear power, with energy 
being transmitted and distributed over long distances to 
consumers. The quality of the generation process can be 
evaluated by the energy efficiency calculating the ratio 
between energy outputs (services such as electricity and 
heat) and inputs (primary energy). In accordance with the 
goals of the World Energy Council [1] energy efficiency 
programs are necessary for sustainable energy 
development. Improvements in energy efficiency should 
be seen as one element of the bigger global energy system 
challenge to reduce greenhouse gas emissions. 
 
The efficiency of conventional centralized power systems 
is generally low in comparison with combined heat and 

power (CHP) technologies (cogeneration) which produce 
electricity or mechanical power and recover waste heat 
for process use. CHP systems can deliver energy with 
efficiencies exceeding 90%, while significantly reducing 
the emissions of greenhouse gases and other pollutants. 
Selecting a CHP technology for a specific application 
depends on many factors, including the amount of power 
and thermal needs as well as an existing heating network. 
District heating is a system for distributing heat generated 
in a centralized location for residential and commercial 
heating requirements. District heating systems improve 
the energy efficiency if the heat is obtained by a 
cogeneration process. 
 
Professional forecast tools of the energy demand are 
necessary to control and optimize the operating schedule 
of a cogeneration plant. These tools are based on 
mathematical models describing the relations between the 
main influence factors and the power and heat demand. 
The following experiences present the applications of 
different mathematical models of the forecast of the heat 
demand in a district heating system. 
 
2. Mathematical Modeling 
2.1 Forecast Model 
 
The energy consumption of the delivery district of a 
power plant depends on many different influence factors. 
The heat demand of a district heating system depends 
strongly on climate factors as outside temperature, wind, 
global radiation, and humidity. On the other side seasonal 
factors influence the energy consumption. Usually the 
power and heat demand is higher on working days than at 
the weekend. Furthermore vacation and holidays have a 
significant impact on the energy consumption. Last but 
not least the heat and power demand in the delivery 
district is influenced by the operational parameters of 
enterprises with large energy demand and by the 
consumer’s individual behaviour. 
 
Because of the large number of influence factors and their 
uncertainty it is impossible to build up an ‘exact’ physical 
model for the energy demand. Therefore the energy 
demand is calculated on the basis of mathematical models 
describing the influence of climate factors and operating 
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conditions on the energy consumption. The objectives of 
the mathematical modeling process can be summarized by 
two main targets: The model should be as simple as 
possible and on the other side as exact as necessary. 
 
In the special case of the heat demand forecast the heat 
consumption data of the district heating system are 
divided into three groups depending on the season: 
winter, summer, and the transitional period containing 
spring and autumn. In each cluster the consumption data 
are separately modeled for working and for holidays. The 
hourly heat consumption can be calculated by typical time 
dependent demand profiles which allow splitting up the 
daily forecast into each hour of the day. Alternatively the 
hourly consumption can be directly modeled as described 
in chapter 4.3. 
 
As described above the heat demand mainly depends on 
climate factors. As a result of a preliminary analysis the 
outdoor temperature gets the strongest impact among 
these factors. Additionally the temperature difference of 
two sequential days represents a significant influence 
factor modeling heat storage effects of buildings and 
heating systems. Thus these influence factors represent 
the basis of the modeling process using the statistical 
method of the regression analysis described in chapter 2.2 
as well as using the algorithm of neural networks which is 
detailed explained in the chapters 3 and 4.  
 
The data basis for the test of the different forecast models 
is given by the heat consumption data of the district 
heating system of the city of Offenbach on Main. The 
district heating system belongs to a power plant consisting 
of two cogeneration units and two additional steam blocs. 
The annual heat consumption amounts to about 460.000 
MWh [2].  About 3.000 customers from industry, office 
buildings, and residential areas are delivered by the 
system. Thus the consumption behaviour is characterized 
by a mixed structure. But the main part of the heat 
consumption is used for room heating purposes.  
 
2.2 Regression model 
 
Following the modeling strategy of chapter 2.1 the heat 
demand Qth of a district heating system can be simply 
described by a linear multiple regression model (RM): 
 

             (1) outoutth tataaQ ∆++= 210

 
where tout represents the daily average outside temperature 
and ∆tout describes the temperature difference of two 
sequential consumption days.  
 
The model (1) can be extended by additional climate 
factors as wind, solar radiation and others. But in order to 
get a model based on a simple mathematical structure and 
because of the dominating impact of the outdoor 
temperature among the climate factors only the two 

regression variables are used in (1). The results of the 
regression analysis for each seasonal and weekday 
dependent cluster are checked by the correlation 
coefficients and a residual analysis. The quality of the 
regression models of the heat consumption strongly 
depends on seasonal effects (see table 1 in chapter 4.5). 
 
3. Design of neural networks 
3.1 Building blocks of neural networks 
 
The basic elements of neural networks (NN) are the 
neurons, which are simple processing units linked to each 
other with directed and weighted connections. Depending 
on their algebraic sign and value the connections weights 
are inhibiting or enhancing the signal that is to be 
transferred. 
 
Depending on their function in the net, three types of 
neurons can be distinguished: The units which receive 
information from outside the net are called input neurons. 
The units which communicate information to the outside 
of the net are called output neurons. The remaining units 
are called hidden neurons because they only send and 
receive information from other neurons and thus are not 
visible from the outside. Accordingly the neurons are 
grouped in layers. Generally a neural net has one input 
and one output layer but can have several hidden layers. 
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Fig. 1: Graphical representation of a neural network 

 
The pattern of connection between the neurons is called 
the network topology. In the most common topology each 
neuron of a hidden layer is connected to all neurons of the 
preceding and the following layer. Additionally in so-
called feedforward networks the signal is allowed to 
travel only in one direction from input to output. To 
calculate its new output depending on the input coming 
from the preceding units (or from outside) a neuron uses 
three functions, which are characterizing its behaviour. 
First the inputs to the neuron j from the preceding units 
combined with the connection weights are accumulated to 
yield the net input. This value is subsequently 
transformed by the activation function fact, which also 
takes into account the previous activation value and the 
threshold θj (bias) of the neuron to yield the new 
activation value of the neuron. The final output oj can be 
expressed as a function of the new activation value of the 
neuron. In most of the cases this function fout is not used 
so that the output of the neurons is identical to their 
activation values (fig. 2). 
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Fig. 2: Structure of a neuron 
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3.2 Learning process in neural nets The backpropagation rule is a gradient descent method. 

With N as the number of weights, the mathematical error 
function can be plotted in N+1 dimensional space. The 
backpropagation algorithm tries to reach the global 
minimum of the error surface by adding to the network 
weights a fraction of the negative gradient. 

 
A neural network has to be configured in such a way that 
the application of a set of input values produces the 
desired output values. There exist various methods to set 
the weights of each connection in order to reduce the error 
between the desired output and the actual output. The 
supervised learning methods incorporate an external 
teacher, who trains the network by providing it with input 
and matching output patterns. The most widely used 
algorithm for supervised learning is the backpropagation 
rule. It was presented by Rumelhart, Hinton and Williams 
in 1986 [3]. 

 
A general problem of the training is the overlearning (or 
overfitting). A network that has been adjusted too many 
times to the patterns of the training set learns these 
specific inputs so well that it won’t tolerate any slight 
deviation from them. Thus if too many cycles of the 
backpropagation algorithm are applied, the network 
looses his ability to give appropriate outputs to new (not 
already trained) input patterns. This is the ability of 
generalization. To avoid overlearning a set of pattern not 
used in training is presented to the network in regular 
intervals during the learning process. If the error for this 
set is not falling anymore but start to rise, overlearning 
begins and the training has to be stopped. 

 
Backpropagation trains the weights and thresholds of a 
neural net and can be applied to feedforward networks 
with monotonic and everywhere differentiable activation 
functions. Prior to start learning it is necessary to initialize 
the connection weights by random values. The learning 
process involves three phases: During the first phase the 
input values are presented and propagated forward 
through the network to compute the output values. In the 
second phase the output values are compared with the 
desired values to calculate the error. During the third 
phase the algorithm alters the weights and thresholds in 
the network in an appropriate way in order to reduce the 
error (fig. 3). 

 
The gradient descent method has different drawbacks, 
which results from the fact that the algorithm doesn’t 
know the totality of the error surface. The method aims to 
find a global minimum with only information about a 
very limited part of the error surface. Backpropagation 
can for example be stuck on plateaus where the slope is 
extremely slight or in deep gaps by oscillation from one 
side to the other. To allow a faster and more effective 
learning different extends to the backpropagation method 
have been published. The most common are the 
momentum term [5] and the flat spot elimination term [6]. 

 
Typically, the error E of the network is calculated by the 
sum of the squared individual errors for each pattern of 
the training set. This error is depending on the connection 
weights; different sets of weights produce different errors. 
We can write E  with ( ) ( ) ∑==

p

pnn1211 Ew ..., ,w ,wEW  
To simulate neural networks specialized software is 
needed. The results exposed in the next chapter have been 
obtained by using the free available software JavaNNS 
[7]. 

 ( )2

j

pjpjp ot
2
1E ∑ −=  

where Ep is the error for one pattern p, tpj is the desired 
output from the output neuron j and opj is the real output 
from this neuron. 
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Fig. 3: Backpropagation learning rule [4] 
 

4. Forecast of the heat demand 
4.1 Design of NN 
 
The following structure and rules are used for the network 
design: 
 
• feedforward net with one layer of hidden neurons 

connected to all neurons of the input and output layer 
• backpropagation learning rule with momentum term 

and flat spot elimination 
• topological update mode to calculate new activation 

values of the neurons 
 
In order to design the complete network the following 
other attributes have to be defined: The number of 
neurons in the hidden layer, the activation function and 
the way to present the input values to the net. To reach the 
best generalization and to evaluate the quality of a trained 
network the dataset is split into three same sized parts: 
The training set is used to train the net, the validation set 
is used to avoid overlearning and the test set is used to 
check the performance of the trained neural network. In 
order to find the most accurate net for the forecast of the 
heat demand several type of networks are trained and 
their prediction errors for the test set are compared. Each 
net is trained three times up to the beginning overlearning 
phase and then the net with the best forecast is retained. 
Networks with 3 to 8 hidden neurons (fig.4) are used with 
three sigmoid (S-shaped) activation functions: The 
logistic, hyperbolic tangent and limited sine function.  
 
 
 
 
 
 
 
 
 
 

Fig. 4: Network for the daily forecast 
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Fig. 5: Hourly forecast with coding by standardization 
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dedicated value is assigned to every hour. This value is 
presented to one input neuron. The 1 out of n coding (fig. 
6) requires that a neuron is assigned to each hour. To 
enter a defined hour the neuron that is allocated to this 
hour is set to 1 while the other neurons for the hour input 
are set to 0. 
 

The formulas of the activation functions are: 
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Before starting the training of the networks, the optimal 
parameter values of the backpropagation with momentum 
term and flat spot elimination are defined by testing 
different values and retaining the values which require the 
lowest number of training cycles to the beginning 
overlearning. 
 
4.2 The daily forecast by NN 
 
The comparison of the mean forecast error for the 6 
categories in which the days were divided shows that a 
network with a logistic activation function delivers the 
best results. For winter days the maximum difference of 
the forecast errors between the nets with different 
activation functions is 1%, for days of the transition 
period it is generally lower than 5% but for summer days 
the difference is generally higher than 10%. Concerning 
the number of neurons in the hidden layer, the comparison 
shows that for days of winter and the transitional period 
nets with 6 neurons in the hidden layer deliver the best 
forecasts. For summer days all nets with logistic 
activation function delivers the nearly same mean forecast 
error. For each period a net was trained 3 times to the 
beginning overlearning, and the net with the best forecast 
was retained. 
 
4.3 The hourly forecast by NN 
 
The analysis of the mean forecast error shows that the 
following three network types with 3 to 6 hidden neurons 
deliver the best predictions: Nets with logistic or 
hyperbolic tangent activation function with coding by 
standardization and networks with limited sine activation 
function with 1 out of n coding. The coding method of 
standardization implicates significant smaller networks 
than the 1 out of n coding. Considering that smaller neural 
networks can be computed much faster than larger nets, 
only the two networks with coding by standardization and 
3 hidden neurons are retained from the nets mentioned 
above. The analysis of the mean forecast error for the 
important winter period delivered from the two retained 
networks shows that a net with 3 hidden neurons and 
logistic activation function with coding by standardization 
delivers the best hourly forecasts. Again for each period a 
net was trained 3 times to the beginning overlearning and 
the net with the best forecast was retained. 
 

4.4 The daily forecast by RM 
 
Corresponding to the modeling aspects described in 
chapter 2.2 for each season and each weekday a 
regression model (see equation 1) is calculated. The 
models describe the dependence of the daily heat demand 
on the outdoor temperature and the temperature difference 
of two sequential days. In order to estimate the regression 
parameters of the model (1) the database of the reference 
year is split up into the training set and the test set. The 
regression parameters are calculated by solving the 
corresponding least squares optimization on the basis of 
the training set. The quality of the model is checked by 
the comparison between the forecasted and the real heat 
consumption for the test dataset. The correlation 
coefficients and the mean prediction errors (table 1) are 
used as quality parameter. For the reference year the 
correlation coefficients range from 0.81 for the summer 
time to 0.93 for the winter season. The modeling results 
show that the quality of the models for the summer and 
transitional seasons is worse in comparison with the 
winter time. 
 
4.5 Comparison of the results 
 
The following table shows the mean prediction errors of 
the tested models for the different seasons and workdays 
of the reference year. The mean error is calculated for 
each model by: 

%100||1
1

⋅
−

= ∑
=

n

i real

realth

Q
QQ

n
ε  ,       (3) 

where n is the number of test data.  
 
The results of table 1 show that the daily heat forecast 
models by neural networks and by linear regression have 
similar qualities. Only for the weekend days of the 
transitional period the daily NN produces better results 
than the RM. The results of the hourly NN are generally 
worse than the others, especially for the summer and the 
transitional periods. All methods obtain the best results in 
the winter period. Additional tests show that the neural 
networks have advantages in the case of data sets with 
large deviations, which is typical for the summer and the 
transitional periods. 
 

season summer transitional period winter 
day type workdays weekend / 

public holiday 
workdays weekend / 

public holiday
workdays weekend / 

public holiday
Daily NN 16.1 12.0 15.0 15.8 5.6 5.7 
Hourly NN 25.5 24.5 20.5 24.2 7.7 7.7 
Daily RM 16.0 12.0 12.9 19.8 5.5 5.6 

 
Table 1: Mean prediction errors ε for tested models
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 Fig. 7: Real and forecasted heat demands of sequential winter workdays 

 
The diagram in fig. 7 shows the winter workdays of 
January and February. It allows the comparison between 
the forecasted and the real heat consumption. The 
forecasted values tend to overshoot in booth directions. 
With rapidly falling mean temperatures the neural 
network predicts higher heat consumption than the real 
values and vice versa for rapidly increasing temperatures. 
In periods with only small changes of the mean 
temperature the predictions of the neural net are 
extremely close to the real values. 
 
5. Conclusion 
 
The tested methods of the neural networks as well as the 
classical regression analysis represent useful and 
applicable tools for the forecast of the heat demand of a 
district heating system. For both methods it is necessary 
to divide the annual data set into clusters depending on 
seasons and weekday types. Regarding only the influence 
of the outdoor temperature together with the temperature 
difference of sequential days delivers sufficient modeling 
results. Generally the models for the winter period are 
better than those ones for the summer and the transitional 
period. The reason for this modeling effect lies in the fact 
that the deviation of the heat consumption increase with 
higher outdoor temperatures. In this case the individual 
consumer's behavior dominates the impact of climate 
factors. 
 
Generally there exists no best modeling method. The 
regression analysis has the advantage of an easy 
numerical management whereas the individually designed 
neural networks are able to model highly deviated data 
sets. The effort for the optimal design of a neural network 
is much higher than for the regression analysis. The 
modeling is to be improved by taking into account more 
data clusters which are able to fit the consumer's behavior. 
Additionally it is possible to use more climate factors in  
 

the heat demand model assuming that there are detailed 
climate data available for each cluster. The forecast tools 
of the heat demand are suitable for the implementation 
into an energy management system to control and 
optimize the operating schedule of a cogeneration plant. 
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