
 
 
 
A BACKWARD METHOD FOR SOLVING PV NODES IN  WEAKLY MESHED 

DISTRIBUTION NETWORKS 
 

 
Antonino Augugliaro, Luigi Dusonchet,  Salvatore Favuzza, Mariano G. Ippolito, Eleonora Riva Sanseverino 

Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni – Università di Palermo 
Viale delle Scienze – 90128 Palermo – Italia 
Tel. +390916615221 – fax +39091488452 

e-mail: augugliaro@diepa.unipa.it, dusonchet@diepa.unipa.it, favuzza@diepa.unipa.it, 
 ippolito@diepa.unipa.it, eriva@diepa.unipa.it  

 
 

ABSTRACT 
In this paper, a new iterative backward/forward 
methodology for the load flow solution of weakly meshed 
systems with fixed voltage nodes is presented. Such 
technique models the loads at each iteration by means of 
impedances, and the PV nodes by means of reactances.  
Each iteration is organised in two steps. In the first, the 
radial network attained from the meshed system through 
cuts and composed of shunt and series impedances is 
solved. In the second step, based on a reduced Thévenin 
impedance matrix, the compensation currents to be 
injected in the cut nodes are deduced. Modelling the PV 
nodes by means of reactances allows the attainment, for 
the reactive power of these nodes, of the same precision 
that it is possible to get solving the network with the 
methods usually adopted for transmission networks. After 
the presentation of the different implementations of the 
backward/forward method proposed in the literature, the 
new technique and the relevant implementation are 
presented in detail. The methodology allows the solution 
of systems with meshes and PV nodes; test results show 
precision, speed and good convergence properties. 
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1. Introduction 
 
The most commonly used solution method for radial 
distribution networks is the iterative backward/forward 
(b/f) method ([1],[2], [3]). Its main points are: ease of 
implementation, robustness, good convergence properties, 
possibility to take into account any dependency of loads 
on voltage, limited computational burden. With reference 
to the current summation method, the b/f technique is 
articulated in two steps: the backward and the forward 
sweeps. In the backward sweep, based on the loads 
currents calculated starting from a given voltage profile, 
the branch currents can be evaluated starting from the 
terminal branches and going up to the root. In the forward 
sweep, starting from the source node with fixed voltage 

the voltages at all the nodes are calculated. If the loads are 
with constant current, the process stops with the 
calculation of the bus voltages; differently, based on the 
dependency of the loads currents on voltage, the new 
values of the currents are calculated and another 
backward phase is carried out. In other variants of the 
method, in the backward phase the branches power flows 
or the driving points admittances, seen from the nodes 
downstream, are evaluated. The forward phase repeats the 
sequential calculation of the bus voltages. The iterative 
process stops when a prefixed convergence condition is 
verified.  
If the network is meshed, the solution process proceeds 
through the ‘radialization’ of the networks by means of a 
number of cuts that equals the number of independent 
meshes ([4], [5], [6]). At the couple of nodes created by 
the cut, the injection of two equal and opposite currents is 
imposed, and its value is determined setting the condition 
that the voltage difference between the two cut nodes gets 
to zero. This is the compensation currents method ([7]) 
that uses the reduced Thévenin impedance matrix and an 
array of known terms constituted by the open circuit 
voltage between two cut nodes; these are the voltages 
attained at the end of a forward phase. Since the condition 
imposed at the cut nodes is linear (voltages equality), the 
system to be solved is also linear and its solution goes 
through the inversion of the reduced Thévenin impedance 
matrix. The latter is composed of terms that do not 
depend on the bus voltages, therefore it is enough to 
invert it once and keep the coefficients of the inverse 
matrix to use them during the iterations. 
The compensation current method is used also to solve 
systems with PV nodes ([8], [9], [10]); in this case, 
fictitious meshes, attained connecting a null impedance 
branch between the PV node and the voltage reference 
bus of the source node, are considered. In the null 
impedance branch an ideal voltage generator is included; 
its intensity is equal to the prefixed voltage module at the 
PV bus. In this case, the solution of the network is carried 
out with the described method, executing cuts in all the 
meshes; the cuts on the fictitious meshes are carried out 
so that the two cut nodes are: the PV node of the network, 
and the pole of the ideal voltage generator. The 

582-056 347

mailto:augugliaro@diepa.unipa.it
mailto:dusonchet@diepa.unipa.it
mailto:favuzza@diepa.unipa.it
mailto:ippolito@diepa.unipa.it
mailto:eriva@diepa.unipa.it
nicholas




construction of the reduced Thévenin impedance matrix is 
carried out based on all the meshes, both real and 
fictitious. As far as the known terms are concerned, 
namely the differences between the bus voltages at the cut 
nodes, there is a problem for the couple of nodes 
belonging to the fictitious meshes ([8], [9], [10],[11]). 
Indeed the voltage at the PV node is attained at the end of 
the forward phase on the radialized system and is given 
by a vector expressed referring to a general reference 
vector (normally the reference vector is the source node 
voltage expressed by a complex number with null 
imaginary part). Only the module, because prefixed, of 
the voltage of the ideal generator is known and the 
displacement is unknown. Different approaches have been 
suggested to solve this problem. In [8], in the two cut 
nodes for a PV node, the reactive power required to set to 
zero the voltage difference at the two nodes is calculated; 
the evaluation is carried out based on a sensitivity matrix 
that, under the hypothesis that the voltages have modules 
close to 1 p.u. and null reciprocal displacements, is the 
reduced Thévenin matrix. The same methodology is again 
considered and modified in [9] in order to accelerate the 
convergence; at the end of each iteration and before 
proceeding to the update of the loads currents, the bus 
voltages are corrected considering in the network only the 
compensation currents variations. In [10], the same 
methodology proposed in [9] is further developed with 
some modifications in the calculation of the compensation 
currents in the PV nodes; in this way, at each iteration, the 
current to be injected at the PV nodes is perpendicular to 
the bus voltage vector. 
With reference to the above cited papers and to the 
relevant PV node model, the displacement of the ideal 
voltage generator is set equal to the displacement of the 
PV node voltage calculated at the end of a forward phase. 
This introduces a certain approximation in the calculation 
of the reactive power to be injected at the PV nodes. To 
eliminate such inconvenience, some methodologies imply 
that a correction of the attained results must be carried out 
at the end. This slows down the process to reach the final 
solution increasing the  number of iterations.  
In the methodology developed by the Authors in [11], the 
displacement of the ideal generator is summed up to the 
unknowns and is calculated imposing the condition that 
the complex power injected at the PV node is of reactive 
type. 
Since such condition is non linear, in order to simplify the 
search of the solution, it is linearized under the hypothesis 
that the displacements between the voltages at the two 
ends of the cut nodes are limited.  
Obviously, the linearization implies the introduction of a 
limited error in the final results related to the reactive 
power of the PV nodes. 
In this paper the PV node is modelled by means of a shunt 
reactance. In the same way, at each iteration, the loads are 
represented by means of equivalent impedances 
calculated based on the bus voltage (fixed at the first 
iteration or calculated in the following iterations) and on 
the type of dependency of the load on the voltage. The 

meshes are opened in order to attain a radial system, and, 
at the cut nodes, the presence of compensation currents is 
considered. At each iteration, the solution process firstly 
requires the solution of the radial network with PV nodes 
and then the determination of the compensation currents. 
The radial system, made up only of impedances, is solved 
considering as unknowns, else than the susceptances of 
the PV nodes, the currents circulating on the impedances 
of the terminal nodes. The conditions imposed on the PV 
nodes voltage module and on the module and 
displacement of the voltage at the branching nodes and at 
the source node, allow, within the backward procedure, 
the determination one by one of all the unknowns of the 
network.  
Once the bus voltages are determined, the compensation 
currents are immediately evaluated by means of a reduced 
Thévenin impedance matrix whose terms do not change 
from one iteration to the other. Before the verification of a 
generic convergence criterion, the bus voltages are 
corrected based on the values just calculated for the 
compensation currents. 
 
 
2. General solution methodology for meshed 

systems with PV nodes 
 
Consider a distribution system supplied by a source node 
at fixed voltage V  having N nodes, M meshes and N0 PV 
fixed voltage nodes. Executing for each mesh, a cut in one 
of the existing nodes, the total number of nodes becomes 
N+M; the two cut nodes at mesh k are indicated with T’k 
and T”k. Referring only to the cut nodes of the meshes, 
the real system can be schematized with the system 
shown in fig. 1. In the latter, for each of the cut nodes, a 
current is injected.  

'
1T

''
1T
'
kT

''Tk
'
MT

''
MT

source 

compI1

comp
kI

comp
MI

Fig. 1.  Network scheme for the simulation of cut nodes. 
 
The nodes T’k are the cut nodes of the meshes in which 
the current is assumed to enter; the nodes T’’k are the cut 
nodes of the meshes in which the current is assumed to 
get out. Obviously, the currents injected in the cut nodes 
of the same mesh are equal and opposite 
( ). All the compensation currents,  comp

kkk III =−= '''
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, are unknowns and can be evaluated by means of 
the reduced Thévenin impedance matrix and by means of 
the vector of the voltage differences between the two cut 
nodes. Indicating with [  the vector of the voltage 
differences at the two ends of the cut nodes and with 
[ ] the vector of the compensation currents injected 

in the cut nodes, it holds: 

]V∆

V∆ =

Z

 
[ ] [ ]compIZ ⋅      (1) 

 
where  is the reduced Thévenin impedance matrix. 
The self impedance term  related to the mesh k 
represents the summation of the branch impedances 
belonging to the path going from the node T’

[ ]Z

kk

k to the node 
T”k; the mutual impedance term related to the meshes 
i and j represents the summation of the impedances of the 
branches that are common to the meshes i and j. Such 
summation is positive (negative) if the compensation 
current injected in node T’

ijZ

i determines in the cut nodes of 
the mesh j a voltage that has the same sign (opposite sign) 
with the positive sign fixed for the voltages between such 
two nodes. From (1), once the voltage differences 
between the cut nodes are known, the compensation 
currents can be deduced. The voltages at the cut nodes 
can be attained at each iteration, solving a radial system 
composed only of impedances. If in the system we have 
NPV PV nodes and NTer terminal nodes, the unknowns are 
the NTer complex currents in the shunt impedances of the 
terminal nodes and the real susceptances of the NPV PV 
nodes.  
In the network are usually present branching nodes1 (only 
for a main feeder without laterals they are not) and the 
source node. From the branching nodes one can attain 
Nter-1 complex independent relations between the 
unknown currents. These can be attained by imposing the 
equality relation between the voltages at the branching 
nodes calculated based on the features related to a couple 
of branches spreading out from the node. The number of 
independent equations equals the number of branches 
spreading out from the node minus 1. From the source 
node one complex relation can be attained imposing that 
the voltage calculated equals the fixed one. For all the PV 
nodes one real relation can be attained imposing that the 
module of the bus voltage equals the prefixed value.  
Therefore, from the mathematical point of view, the 
problem is solvable, nevertheless, the complete 
construction of the system of 2 NTer + NPV real relations 
would give rise to a non linear system difficult to solve. 
On the contrary, the backward solution procedure set up 
allows the solution of all the equations. In this way, all the 
unknowns can be found using the conditions imposed at 
the branching nodes, in the PV node and in the source 
node. In this process, the elementary operation consists in 
the analysis of all the network branches following a 

suitable sequence and in the determination, branch by 
branch, of the voltage and current at the starting node 
based on the homonymous features at the arrival node.  
Obviously the sequence chosen for the branches to be 
analyzed is such that a branch is analyzed only after all 
the other branches downstream are analysed.  
Every time that, proceeding from the ending nodes 
towards the source node, a branching, a PV node or the 
source node is encountered, one or more unknowns are 
determined. In case of PV nodes the susceptance of the 
PV node is added as new unknown. 
 
2.1 Solution of radial networks with PV nodes 
 
The backward methodology set up analyses one branch at 
a time, starting from the terminal branches for which the 
shunt current is introduced as further unknown. The 
typology of the sending bus of the branch analysed 
identifies the type of unknown to be considered, namely 
to transfer to the branch upstream the unknowns on which 
branch voltages and currents depend. In what follows, the 
typical cases that can arise are examined.  
 
2.1.1 Main feeder without laterals and PV nodes (fig. 

2). 
The current on the last shunt impedance, , represents 
the only unknown of the network; indeed all the voltages 
and currents of the system are proportional to it. 
Therefore, going up to the source node, the features that 
each branch transfers to the branch upstream depend on 
the unknown current through a proportionality coefficient 
only depending on the networks impedances (that for the 
current iteration are constant). Imposing that the voltage 
at the source node equals the fixed value, it is possible to 
calculate the value of the unknown current and from the 
latter all the voltages and currents of the network: 

NI

 
NoV,source IH=V ⋅     (2) 

 
where the coefficient  depends on the series and 
shunt impedances of the network in the path connecting 
the terminal node to the source node. 

oV,H

  
2.1.2 Main feeder with one lateral and without PV 

nodes (fig. 3). 
The currents on the two terminal shunt impedances are 
unknown,  and ; proceeding from the two 
terminal branches and going towards the source node, the 
two branches having as sending bus the branching node, 
D, give for the voltage in the same node, two relations: 

1NI 2NI

 
1NDV,D IH=V ⋅     (3) 

DN2
'

DV,
'
D VIH=V ≠⋅     (4) 

 
from which, imposing the equality constraint, a 
proportionality relation between the two unknown 
currents can be attained: 

                                                 
1 Nodes from which spread out more than two branches. 
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DN1
'

DV,DV,N1N2 kI= H HI= I ⋅⋅ /   (5) 
 
Multiplying by all the currents and voltages of the 
lateral, the same features are now proportional to the 
unknown current at the terminal node of the main feeder, 

(or vice versa), reducing to one the number of 
unknown currents.  

Dk

1NI

The features on the branches upstream the branching node 
are, in this way, proportional only to one current and, 
from the analysis of the branch connected to the source 
node imposing that the voltage calculated equals the 
specified voltage, the unknown current can be attained 
and from it all the other features of the network: 
 

N1
'

oV,source IH=V ⋅     (6) 
 

In this expression, the coefficient '
oV,H  depends on the 

series and shunt impedances of all the network (main 
feeder and lateral). 
 
2.1.3 Main feeder without laterals and with 2 PV 

nodes (fig. 4). 
The unknowns are: the current on the shunt terminal 
impedance (module and displacement) and the 
susceptances of the two PV nodes. Starting from the 
terminal branch, the voltages and currents of the branches 
downstream node 2 are proportional to the unknown 
current NI . The voltage at the sending bus of the branch 
downstream node 2 is therefore expressed by: 

jφ
NV,2 IH=V e2  

in which the module and displacement of the current 
NI are unknown. 

Being node 2 a PV node, the following condition must be 
satisfied: 
 

sp
2NV,2 |=IH ||= V| V2     (7) 

 
which does not depend of the displacement of the current. 
Therefore from equation (7) the exact value of the module 
of the current NI  can be deduced and, with it, it is 
possible to attain the exact values of the modules of the 
voltages and currents of the branches downstream node 2. 
The branch current that is transferred upstream node 2 
keeps then the displacement of NI  as unknown; in the 
branch upstream node 2 the presence of the reactive 
current due to the susceptance B2 of the PV node must be 
considered; such current is given by: 
 

jφ
NV,222B IH= V= I eBj Bj 22

    (8) 

 
It depends on two unknowns: the displacement of current 

NI  and the susceptance B2. Finally, the branch current 
upstream can be expressed as the summation of two 

components: one depending only on the displacement φ of 
NI  and the other depending on the displacement φ and 

on the susceptance B2. The voltages and currents of all the 
branches between nodes 2 and 1, are given by the 
summation of two components of the above indicated 
type. In particular, the voltage at node 1 is expressed, as a 
function of the features of the branch downstream, by: 
 

jφ
N

B
V,12

jφ
NV,1 IH+IH=V eBe1   (9) 

 
whose module does not depend on the displacement of 

NI , φ (unknown). Imposing that the module of 1V  
equals the imposed value: 
 

|IH+IH=|V N
B
V,12NV,1

imp B1    (10) 
 
from which: 
 

( ) ( ) ( )
( ) ( ) 2

22
1

]ImB[Im

]ReB[Re

N
B
V,12NV,1

N
B
V,12NV,1

imp

IH+IH

 +IH+IH= V

+
 (11) 

 
which gives rise to the following second order equation in 
the unknown B2: 
 

0c2bBaB =++ 2
2
2     (12) 

 
where: 
 

( ) 2a |IH=| N
B
V,1      (13) 

 
( ) ( ) ( ) ( )N

B
V,1NV,1N

B
V,1NV,1 IHIH +IHIH= ImImReReb  

(14) 
 

( )21
2c imp

NV,1 V|IH=| −     (15) 
 
whose solution is: 
 

a
acb±b=B

2

2
−−      (16) 

 
where the choice of the sign – allows to have higher 
values of susceptance and thus the lowest values of 
reactive power. Known the susceptance B2 it is possible to 
correct all the features depending on B2 in the path 
between nodes 1 and 2. It is thus eliminated one 
unknown, but in the branch upstream the node, the current 
circulating on the unknown admittance must be included, 
jB1 , associated to the node PV 1 (the displacement φ of 
the current NI  is still unknown).  
Starting from the branch upstream node 1, all the voltages 
and currents can be expressed as the summation of two 
components: one depending on the displacement φ of NI  
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and the other depending on φ and on the susceptance B1. 
At the branch connected to the source node, imposing that 
the voltage calculated equals the imposed voltage: 
 

jφ
N

B
sourceV,1

jφ
NsourceV,source IH+IH=V eBe  (17) 

 
from the equality of the modules, the value of the 
susceptance B1 can be deduced  (starting from a II degree 
equation analogous to 12). Executed the correction of the 
components of voltage and current that depend on B1 in 
the branches between the source node and node 1, 
imposing the equality of the displacements in (17) the 
value of φ can be deduced and all the voltages and 
currents of the network can be corrected. 
 
2.1.4 Feeder with two laterals with two PV nodes 

(fig. 5). 
Going from the terminal nodes up to the root node, the 
conditions imposed at the two PV nodes allow to deduce 
the correct value of the modules of the two shunt terminal 
currents. Therefore, in the branches upstream the two PV 
nodes, voltages and currents are expressed as the 
summation of two components; for the branches 
belonging to the lateral L1, a component depends on the 
displacement φ1 and the other on the displacement φ1 and 
from the susceptance B1. For the branches belonging to 
the lateral L2, a component depends on the displacement 
φ2 and the other on the displacement φ2 and on the 
susceptance B2. The voltage at the node D, based on the 
features of the branch belonging to the lateral L1 and 
those of the branch belonging to the lateral L2 is expressed 
by the two following equations: 
 

1jφ
N,1

B
DV,1

1jφ
N,1

1
DV,D IH+IH=V eBe 1   (18) 

 
2jφ

N,2
B

DV,2
2jφ

N,2
2

DV,
'
D IH+IH=V eBe 2   (19) 

 
From the condition '

DD V=V  two relations can be 
attained, one related to the equality of the modules and 
the other related to the equality of the displacements; 
from the first, considering that the modules do not depend 
on the unknown displacements, one of the two 
susceptances can be deduced, as an example, the B2. The 
process is identical to that seen in the preceding paragraph 
with the only difference that in equation 15, instead than 

( )21
impV  we have 2|VD| ; calculated the susceptance B2. 

all the features depending on it can be corrected in the 
path between node D and node 2. Once the correction is 
executed, imposing the equality of the displacements, the 
correction of the displacement of all the features of the 
branches belonging to the lateral L2 can be evaluated and 
corrected. In this way, the displacements of such features 
are corrected compared to the voltage of node D 
calculated based on φ1 and B1. still unknown. Note that, 
differently from the preceding case, the evaluation of one 
of the susceptances depends on the value initially 

assigned to the other and since the link is non linear, the 
final calculation of the unknown susceptance is 
approximated. Starting from the branch upstream node D 
all the voltages and currents can be expressed as the 
summation of two components: one depending only on 
the displacement φ1 of ,1NI  and the other depending on 
φ1 and on the susceptance B1. We are still in the 
conditions of the preceding case; therefore, at the branch 
connected to the source node, imposing that the voltage 
calculated equals, in module and displacement, to the 
imposed one, the last two unknowns can be deduced, B1 
and φ1. 
 
 
3. Implementation of the methodology 
 
The evaluation of the following unknowns: the 
susceptances B in the PV nodes, and the currents compI  
between the cut nodes of the meshes, is executed 
calculating, at each iteration, the variations of such 
features compared to their values at the end of the 
preceding iteration. In other terms, the susceptance 
calculated at the end of one iteration is summed up to the 
one already existing in the PV node, and the current 

compI  ( ''' TT II −== ) is summed up to those already 
existing in the two cut nodes T’ and T”. 
The main steps of the procedure are the following:  
1. construction of the reduced Thévenin impedance 

matrix of the impedances between the cut nodes of 
the meshes. From the bus impedance matrix, by 
inversion, an admittance matrix can be attained, 
whose terms do not change in all the iterative 
process; the latter, multiplied by the vector of the 
voltage differences between two cut nodes of each 
mesh, allows to attain the compensation currents; 

2. initialization of the bus voltages; 
3. calculation of the equivalent loads impedances; 
4. initialization of the values of the unknowns, currents 

in the shunt impedances of the terminal nodes and PV 
nodes susceptances; 

5. following a fixed sequence, solution of each branch, 
namely calculation of the features at the sending bus 
based on the features values at the ending bus. If the 
sending bus is only a branching node or a PV node or 
the source node, calculation of one or two unknowns 
and correction of the features that depend of the just 
evaluated unknowns; 

6. calculation of the compensation currents; 
7. correction of the bus voltages of the network ([9]) as 

an effect of the currents injected in the cut nodes of 
the meshes; 

8. comparison between the bus voltages values just 
calculated and those assumed by the same voltages at 
the beginning of the iteration; if the error is below a 
prefixed margin, the iterative process stops, 
otherwise another iteration is executed starting from 
step 3. 
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4. Application 
 
The developed methodology was applied to solve the 
network with 85 nodes and 10 meshes shown in fig. 6; the 
data about lines and loads are reported in [2]. The 
presence of a given number of PV nodes was considered 
(ranging from 1 to 7) as well as the presence of a given 
number of meshes (from 1 to 10). Also two different 
loading conditions have been studied. The first is the 
operation with the rated loads, the second with all the 
loads increased of 50%. In table I, for two loading levels 
and for given numbers of PV nodes and meshes, the 
number of iterations required to reach the final solution 
are reported. The convergence factor ε is fixed equal to 
10-4; the module of the voltage at the PV nodes was fixed 
to 1 p.u. when the load is at the rated value and equal to 
0.95 p.u. when the load is increased of 50%. For all the 
analysed cases also the reactive power injected at the PV 
nodes was calculated and compared to the value attained 
solving the system with the Newton-Raphson method. In 
all the examined cases, the absolute value of the 
difference between two values has the same order of 
magnitude of the convergence factor. The results indicate 
that the number of iteration grows with the loading and of 
the number of meshes and PV nodes. For the same 
number of PV nodes, the growth is fast for limited 
numbers of meshes (1,2); starting from 4 meshes the 
increase is null or limited. With the same number of 
meshes, the iterations required increase almost uniformly 
with the number of PV nodes. From the simplest 
condition, one mesh and one PV node, to the most 
complex, ten meshes and seven PV nodes, the number of 
iterations goes from 5 to 12 for a rated loading, and from 
6 to 13 for loading increased of 50 %. The CPU time for 
iteration goes from 0.0105 s to 0.0114 s independently 
from the loading level. 
 
 
5. Conclusion 
 
The presence in distribution systems of fixed voltage 
nodes requires the setting up of analysis methodologies of 
such networks in which the simulation of the PV nodes 
gives reliable results with a limited number of iterations 

and with limited calculation times. The b/f methods now 
developed for the analysis of radial systems have been 
extended also to the case of meshed systems with PV 
nodes. The latter are considered with the creation of 
fictitious meshes. The network with real and fictitious  
meshes is then radialized by means of cuts and can thus 
be solved by the b/f technique. Once the voltages at the 
cut nodes are known, the unknown features can then be 
determined, these being associated both to the meshes and 
to the PV nodes.  
The solution technique here developed (and then extended 
to meshed systems) requires the schematization at each 
iteration of the loads by means of equivalent impedances; 
the network is composed only of series and shunt 
impedances and is supplied by only one node. For the 
solution of such type of network a backward technique 
has been set up in which are considered unknown the 
currents in the shunt impedances of the terminal buses. 
Proceeding from the terminal branches up to the root 
node, the condition imposed at the voltage of the 
branching nodes and of the source node allow the 
elimination, one by one, of all the unknowns. The PV 
node model here proposed implies its schematization by 
means of a susceptance, therefore, if in the radial system 
there are PV nodes to the cited unknowns also the PV 
nodes susceptances must be added. 
In a similar way, analyzing the branches from the terminal 
nodes up to the root node, the conditions imposed to the 
module of the voltage at the PV node and those imposed 
for the voltage of the branching nodes and of the source 
node, allow the evaluation one by one of all the 
unknowns. After having solved the radialized system, 
keeping into account the PV nodes, the compensation 
currents, that take into account the presence of meshes, 
can be considered..  
The results of the applications have shown that the 
number of iterations is limited also when highly meshed 
systems with many PV nodes and heavily loaded must be 
solved. The precision of the results is the same as that of 
the results that can be attained with the techniques usually 
adopted for transmission systems. 
 
 

 
Table I – Network with 85 nodes and 10 meshes. 

Number of iterations, for two loading levels, as the number of PV nodes and meshes varies. 
 Rated load Rated load increased of 50 % 

Meshes number 1 2 4 6 8 10 1 2 4 6 8 10 
PV nodes number             

1 5 6 9 9 9 9 6 7 10 10 10 10 
2 5 7 11 11 11 11 6 8 10 10 10 10 
3 6 7 11 11 11 11 6 8 10 10 10 10 
4 6 7 11 11 11 11 7 8 10 10 10 10 
5 7 8 10 10 10 10 8 8 10 10 12 12 
6 9 9 10 10 10 10 10 11 12 12 13 13 
7 9 9 11 11 12 12 10 11 12 12 13 13 
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Fig. 2.  Circuital model made of N four-pole networks connected in cascade. 
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Fig. 3.  Circuital model of a simple network with a branching point at node D. 
 

 
Fig. 4.  Circuital model of a network with two PV nodes. 
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Fig. 5.  Circuital model of a network with a branching point (node D) and two PV nodes (nodes 1 and 2). 
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Fig. 6.  Test system with 85 nodes and 10 meshes. 
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