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ABSTRACT 
This paper presents the use of artificial neural networks 
(ANN) to estimate electric fields around an overhead 
power transmission line. Although, there exist many 
efficient numerical methods, e.g. finite difference method 
(FDM), finite element method (FEM), boundary element 
method (BEM), etc, to estimate electric field distribution 
caused by live conductors, it typically consumes 
substantial execution time when high accuracy of 
obtained solutions is required or especially when time-
varying field is involved. Therefore, to estimate the 
electric field strength using ANN employing feedforword 
network with backpropagation learning can be an 
alternative. To evaluate its use, overhead 22-kV single-
phase power line of 100 m2 test area and 230-kV three-
phase power lines of 400 m2 test area were simulated. The 
results obtained from the ANN are compared with those 
obtained by the analytical method, the FDM and the 
FEM.     
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1. Introduction 
 
The computation of electric fields is complex and difficult 
to find an exact solution [1]. Several numerical techniques 
have been increasingly employed to solve such problems 
since availability of high performance computers. Among 
these, finite difference method (FDM), finite element 
method (FEM) and boundary element method (BEM) are 
very popular [2]. Although they are simple and useful to 
estimate electromagnetic fields, it typically consumes 
substantial execution time when high accuracy of 
obtained solutions is required or especially when time-
varying field is involved. Utilizing some efficient 
intelligent methods such as artificial neural networks 
(ANN) is able to estimate an electric field via an 
appropriate neural model. This technique is very useful 

when some environmental factors (e.g. temperature, 
moisture, etc) are taken into account [3]. The neural 
model is very flexible. When its weighting parameters are 
successfully trained corresponding to appropriate input 
variables, electric field estimation of any input values can 
be made rapidly. 
   The prediction of electric field intensity is very 
important in many aspects nowadays. Due to difficulty 
and time consuming of electric field measurement, 
numerical calculation can be applied to evaluate electric 
field distribution. In addition, since serious effects on 
health risk caused by electric field strength have been 
reported [4], recommendation and guidelines of electric-
field-related tasks such as an overhead power 
transmission line are released to prevent a careless 
activity that might be performed close to the restricted 
area around the live conductor.  
     In this paper, exploitation of neural modeling to 
estimate electric field strength at any point around an 
overhead transmission line is demonstrated. The popular 
feedforward network with backpropagation learning is 
used. First of all, Section 2 presents an analytical solution 
of electric fields around an overhead power line system of 
single-phase and 3-phase conductors. Also, brief 
explanation of FDM and FEM to estimate electric field 
solutions is included. The neural model of electric field 
estimation is described in Section 3. Section 4 and 5 show 
numerical results and conclusions respectively. 
 
 
2. Electric Field Calculation of a Single -

conductor System 
 
Fig. 1 shows a single conductor system in 2D. Points 1 
and 1’ in the figure represent the live conductor with 
potential V1 and its image potential, respectively.  
   To compute the electric field strength at a point P(x,y) 
can be performed in many different ways. Some require 
tedious and substantial mathematical expression. Whereas 
some employ a simple formula, but obtained solutions are 
less accuracy.   
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   In this paper, an analytical solution derived from 
Maxwell’ equations, the FDM and the FEM are 
summarized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. A single conductor system 

 
2.1 Analytical method 
From Maxwell’s equations electric field strength at a 
specified point P(x,y) can be expressed [5] as follows 
.   
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Where  r is a conductor radius 
h is a distance between the conductor and 

       the earth surface underneath 
V1 is a conductor potential 

    Beside the analytical approach, numerical solutions can 
be alternatively obtained by using the FDM and the FEM. 
 
2.2 Finite Difference and Finite Element Methods 
Solutions of partial differential equations such as Laplace 
or Poison equations can be obtained numerically by using 
the FDM and the FEM. These two methods divide a 
domain into many small discrete elements to formulate a 
set of algebraic difference equations characterizing 
electric flux of the domain. With given boundary 
conditions on the solution region, an approximate solution 
is simply obtained by solving such algebraic equations. In 
2D problems, rectangular grid and linear triangular 
elements as shown in Fig. 2 are the most commonly used 
domain discretization [6] for the FDM and the FEM 
respectively.  
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Fig. 2. Domain discretization of the FDM and FEM 

 
 After all node equations or all element equations are
successfully derived, they must be assembled altogether 
to represent the unified characteristic of the entire 
domain. The entire system is expressed in matrix form as 
[C][V] = [F], where [C] is a coefficient matrix, [V] is a 
vector of unknowns and [F] is a vector of external forces. 

Its solutions can be obtained with many efficient 
techniques of handling a set of linear equations, e.g. 
Gaussian elimination, matrix factorization, conjugate 
gradient method, etc. 
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     Although the FDM is straightforward and simple, it is 
not widely used when a non-uniform domain shape and 
heterogeneous conditions are involved. The FEM is more 
acceptable to deal with nonlinear problems. However it 
can be computationally expensive for large problems. 
Furthermore, to include effects of conductor size, 
unstructured and non-uniform grid must be used 
inevitably. Hence, the overall execution time is very 
expensive.  
 
 
3. Electric Field Model using Artificial 

Neural Networks 
 
The ANN is well-known and widely used in several 
research areas [7]. The ANN typically consists of a set of 
processing elements called neurons that interact by 
sending signals to one another along weighted 
connections. The connection weights, which can be 
determined adaptively, specify the precise knowledge 
representation. Usually it is not possible to specify the 
connection weights beforehand, because knowledge is 
distributed over the network. Therefore, a learning 
procedure is necessary in which the strengths of the 
connections are modified to achieve the desired form of 
activation function.  
     In electromagnetic problems, a small number of 
publications have been found. The implementation of 
ANN model for electric field problems requires electric 
field database of a 2D field domain. This paper focuses on 
the estimation of the electric field strength. Hence a single 
output structure of the ANN is presented as shown in Fig. 
3.  
     All weighting parameters are obtained by 
backpropagation training in order to minimize mean 
square error or so-called loss function. Fig. 4 shows 
training structure of a simple feedforward network. The 
training problem can then be formulated as the following 
optimization problem. 
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  Fig. 3. Simple structure of a feedforward neural network 
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     The neural model used in this paper consists of two 
layers with 500 nodes and 1 node respectively. The 
transfer function of the first layer is the log sigmoid 
transfer function, while the linear transfer function is 
applied to the second layer. The training process 
corresponds to electric field strength as a function of 
Cartesian coordinates (x,y), conductor radius and 
boundary conditions. The training of the neural network is 
carried out through 108 training points, 36 training for 
each radius (35 70 and 150 mm2 AAC: All Aluminium 
Conductor) as shown in Fig. 8.   

   Some efficient classical optimization techniques such as 
steepest descent methods, Newton and quasi-Newton 
methods, etc, are applied to find a set of optimal 
weighting parameters [8].   
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Fig. 4. Training structure of a simple feedforward network 

 
    In this paper, when a solution region is defined, electric 
field strength depends on a position of measured points, 
boundary conditions, conductor radius, environmental 
conditions, etc. All physical factors can be taken into 
account as many as possible, as shown in Fig. 5.                     a) FDM domain                                b) FEM domain 
  

Fig. 7. Solution domain of the FDM and the FEM 
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Fig. 5. Relation among physical factors via neural model  

  
  
4. Numerical Results  

  
100 m2 area near an overhead power transmission line as
shown in Fig. 6 is situated as the test system. The voltage 
distribution standard level of Thailand (22 kV, 50 Hz) is 
applied as the surface conductor potential. For 
benchmarking, calculation lines of 2-m, 4-m, 6-m above 
the earth surface and the earth surface level are defined.  

  
Fig. 8. 36 training points for a fixed radius of the neural 

network model 
   
   After the training, electric field strength at test positions 
along the calculation lines can be achieved and 
graphically presented in Figs 9,10 and 11.   
     As a result, the neural network model gives good 
performances for the electric field strength estimation. 
With the training algorithm, this model can account 
effects of some key environmental factors such as 
conductor size, temperature, moisture and humidity, dirt 
or fog condition, etc. This leads the neural network 
approach to overcome other efficient numerical methods 
like the FDM and the FEM in this aspect.  
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Fig. 6. Test domain of an overhead power transmission 

line 
 
     For comparison, the solution domain for the FDM and 
the FEM can be discretized as shown in Fig. 7. 
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The second test is a 400 m2 cross-area around an 
overhead power transmission line as shown in Fig. 13. 
The voltage distribution standard level of Thailand (230 
kV, 50 Hz) is assumed as the surface conductor potential. 
For benchmarking, calculation lines of 15-m above the 
earth surface and the earth surface level are defined. 
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In the same manner, the electric field distribution of 
this test can be characterized by the FEM, FDM and 
ANN. They can be depicted as shown in Fig. 14. Also, 
comparative results among them are illustrated 
graphically in Fig. 15.  

ground level 

 

Fig. 9. Electric field strength caused by 35 mm2 ACC  
conductor size 
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Fig. 14. Electric fields around the 3-phase power line 
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Fig. 10. Electric field strength caused by 70 mm2 ACC 
conductor size 
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Fig. 15. Electric fields around the power line at y-axis = 
15m 
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From the calculation, the level from 15-m above the 

ground to the conductor is critical due to the excessive 
electric field strength (greater than the maximum 
allowance of 5 kV/m that human body can stand) 
according to the international radiation protection 
association (IRPA) [9]. 

Fig. 11. Electric field strength caused by 150 mm2 ACC 
conductor size 
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5. Conclusion 
 
Estimation of electric field strength can be performed by 
using the neural network model. In this paper, overhead 
22-kV and 230-kV power transmission lines are used for 
test as solution domains. The first test, the 22-kV system, 
consists of 121 nodes. The training of neural network is 
based on training data, which correspond to the electric 
field strength at given points. This system is simple and 
the analytical solution is available for comparison. With 
108 training data, optimal weighting parameters are 
obtained by minimizing the mean square error. The test of 

 
Fig. 13. Test domain of an overhead power transmission 

line 
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the network is challenged with 36 test points along four 
calculation lines above the earth surface. The second test, 
the 230-kV power transmission line, consists of 441 
nodes. The training of neural network is based on training 
data, which correspond to the electric field strength at 
given points. With 200 training data, optimal weighting 
parameters are obtained by minimizing the mean square 
error. The test of the network is challenged with 121 test 
points along four calculation lines above the earth surface. 
The numerical results present good agreement with that 
obtained by the analytical method, while the FDM and the 
FEM do not. It is very important to be in evidence that the 
neural model gives good results in electric field 
estimation. This might imply that the neural network 
approach can be further used to predict electric field 
distribution around an overhead power transmission line 
under an unexpected weather condition, e.g. rainy, foggy, 
dirty, or other extreme conditions. 
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