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ABSTRACT
In this paper, a robust sensor fault detection and isolation
in load frequency control loop of interconnected power sys-
tems based on Unknown Input Observers (UIO) is designed
and applied. The disturbances are assumed as unknown
inputs to the UIO and the UIO is robust to disturbances.
Simulations are performed for the dynamical model of a
power control system composed of two areas. The pro-
posed scheme is able to detect and isolate sensor faults. By
using residuals, the designed “Fault Detection and Isolation
Logic” system shows the operator which sensor is faulty.
Hence the faulty sensor can be replaced by a healthy one
for a more reliable operation.
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1. Introduction

In an interconnected power system, which is composed of
two or more areas, area-wise decentralized Load Frequency
Control (LFC) is an effective method of maintaining sys-
tem's frequency and power interchanges. Since a failure
in the execution of a properly designed LFC may result in
undesired deviations in the system's frequency and power
interchanges, the detection and isolation of any fault occur-
ring in the load frequency loops is of importance.

Aldeen and Sharma [1] have introduced, for the first
time, a software approach to fault detection and identifi-
cation in the LFC loops of interconnected power systems.
Their approach is based on the failure detection filter.  In
this study, an Unknown Input Observer (UIO) and its ap-
plication to a LFC for sensor Fault Detection and Isolation
(FDI) are scrutinized. In order to establish a robust FDI,
the UIOs are organized in the structure of the Generalized
Observer Scheme (GOS).

The problem of designing an observer for a linear sys-
tem with both known and unknown inputs has been stud-
ied for over two decades [2]-[10]. In real problems, there
are many situations where disturbances are present. Dis-
turbances are assumed as unknown inputs to the Unknown
Input Observer (UIO). Aldeen and Crusca have proposed a
fault detection procedure based on the UIO to detect trans-

mission network faults and to isolate their exact locations
[11]. In this paper, UIOs are designed to detect and isolate
the sensor faults in a LFC system.

In the paper, simulations are performed for the ninth-
order dynamical model of a power control system com-
posed of two areas. By using residuals, the designed “Fault
Detection and Isolation Logic” system shows the operator
which sensor is faulty. Thus, the sensor faults are isolated
straightforwardly. The simulation results show that sensor
faults can be effectively detected and isolated.

2.   Robust Unknown Input Observer (UIO)
Design

Consider the dynamical system subject to sensor faults as:

ẋ = Ax + Bu + Ed

y = Cx + fs,
(1)

where x ∈ Rn is the state vector, u ∈ Rq is the input
vector, d ∈ Rq is unknown input vector, y ∈ Rp is the
measurable output vector, fs ∈ Rm is an immeasurable
vector considered as an additive bias resulting from sensor
failures. The matrices A, B, E, and C have appropriate
dimensions.

An observer is defined as an unknown input observer
for the system described by (1). The main task in robust
fault detection is to generate a residual signal that is insen-
sitive to the system disturbance. The system nonlinearities
can be assumed as an additive unknown disturbance term
in the dynamic system equation.

The block diagram of a full-order UIO is given in
Fig. 1. The equations for this full-order UIO is described
as

ż = Fz = TBu + Ky

x̂ = z + Hy,
(2)

where x̂ ∈ Rn is the estimated state vector and z ∈ Rn

is the state of the full-order observer, and F , T , K, H are
matrices to be designed for achieving unknown input de-
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Figure 1. The structure of a full-order UIO

coupling and other design requirements [9] as

K = K1 + K2 (3)
(HC − I)E = 0 (4)

T = I − HC (5)
F = A − HCA − K1C (6)

K2 = FH (7)

If the above requirements are satisfied,  then the dynamics
of the state estimation error e = x − x̂ will be

ė = Fe. (8)

The UIO given by (2) is designed such that the state esti-
mation error approaches zero asymptotically, regardless of
the presence of the unknown input . The equations (3)-(7)
should be met to design the UIO provided that all eigen-
values of the matrix F are stable. Note that K1 is assigned
such that F will be Hurwitz. Two assumptions should be
made in this approach:

Assumption I: rank(CE)=rank(E)

Assumption II: (C,A1) is detectable pair

A1 = A − E[(CE)T CE]−1(CE)T CA

A1 = A − HCA
(9)

From the above analysis, it can be seen that K1 is a
free matrix of parameters in the design of an UIO. After K1

is determined, other parameter matrices in the UIO can be
computed. The matrix K1, which stabilizes the matrix F , is
not unique due to the multivariable nature of the problem.
That is to say there is still some design freedom left in the
choice of K1, after unknown input disturbance conditions
have been satisfied.  The freedom of the parameters of K1

allows one to guarantee the matrix F to be stable. During
the design, the matrix F is first chosen as a stable matrix
and then the matrix K1 is calculated from (6).

The Unknown Input Observer (UIO) Design Proce-
dure is given below: [9]

1. Check the rank condition for E and CE: If
rank(CE) 6= rank(E), an UIO does not exist, go
to 10.

2. Compute H , T , and A1:

H = E[(CE)T (CE)]−1(CE)T

T = I − HC

A1 = TA

3. Check the observability: If the pair (C,A1) is observ-
able, an UIO exists and K1 can be computed using
pole placement, go to 9.

4. If the pair (C,A1) is not observable construct a trans-
formation matrix P for the observable canonical de-
composition to select independent n1 = rank(W0)
(W0 is the observability matrix of (C,A1)) row vec-
tor pT

1 , . . . , pT
n1

from W0, together other n − n1 row
vector to construct a non-singular matrix.

5. Perform an observable canonical decomposition on
(C,A1):

PA1P
−1 =

[

A11 0
A12 A22

]

CP−1 =
[

C∗ 0
]

6. Check the detectability of (C,A1). If A22 is not Hur-
witz, an UIO does not exist and go to 10.

7. Select n1 desirable eigenvalues and assign them to
A11 − K1

pC∗ using pole placement.

8. Compute

K1 = P−1KP = P−1
[

(K1
p)T (K2

p)T
]T

where K2
p can be any (n − n1) × m matrix.

9. Compute F and K: F = A1−K1C, K = K1+K2 =
K1 + FH .

10. STOP.

3. Power Control System Model

Within a power system area, as the dynamics between the
generators are neglected and the coherency among them is
assumed, the collective dynamic performance of all gener-
ators in each area can be represented by an equivalent gen-
erating unit model that is composed of a generator, turbine
and governor.

The block diagram of a two-area system with an area-
wise decentralized LFC is given in Fig. 2. In addition to
the primary regulation by speed governors acting on gen-
erators, the supplementary control is supplied by feedback
loops that integrate the Area Control Errors, which are the
deviations in frequencies and power interchanges. A dy-
namic model of a multi-area power system is summarized
as follows:
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Figure 2. Block diagram of LFC applied to a two-area
system

For a multi-area power system, each area i is repre-
sented by an equivalent generating unit. The state variables
∆fi, ∆Pgi

and ∆Xgvi
are the deviations in the frequency,

generation and governor valve position of area i, respec-
tively. The generator dynamics is as follows:

ḟi =
f∗

2Hi

(∆Pgi
− ∆Pdi

− ∆Ptiei
− Di∆fi − ∆fi),

where f∗ is the nominal frequency, Hi and Di are the iner-
tia and damping constants, and ∆Pdi

and ∆Ptiei
represent

the deviations in the load demand and interchange power,
respectively.

˙∆Pgi
= −

1

Tt1

∆Pgi
+

1

Tti

∆Xgvi

˙∆Xgvi
= −

1

Tgvi

∆Xgvi
−

1

Tgvi
Ri

∆fi +
1

Tgvi

∆Pci

where Tti
and Tgvi

are the time constants of turbine and
governor respectively. Ri is the regulation constant and
∆Pci

is deviation in speed changer position of the gover-
nor.

For a power system having n areas, the deviation in
the tie-line power of area i,

∆Ptiei
=

n
∑

j=1

Tij(

∫

∆fidt −

∫

∆fjdt),

where Tij 

is the synchronizing power coefficient between
area i and j. For each control area, Area Control Error
(ACE) is de�ned as

ACEi = ∆Ptiei
− βi∆fi,

where βi is the frequency bias. The closed-loop control is
provided by

∆Pci
= −KIi

∫

ACEidt,

where KIi
is the integral gain.

A state-space representation of the two-area model is
as follows:

ẋ = Ax + Bu + Ed

y = Cx.
(10)

The state vector,

x =
[ ∫

∆Ptie1
dt x1 x2

]T
,

where

xi =
[ ∫

∆fidt ∆fi ∆Pgi
∆Xgvi

]

.

The input vector, u =
[

∆Pc1
∆Pc2

]T . E is
called the disturbance distribution matrix and E =
[

∆Pd1
∆Pd2

]T . The output vector,

y = [∆f1 ∆f2 ∆Ptie1
∆Pg1

∆Pg2

∫

∆f1dt
∫

∆f2dt
∫

∆Ptie1
dt]T .

As an example, using the parameters given in [12],
the matrices in (10) are computed as follows:

A =

























0 .55 0 0 0 −.55 0 0 0
0 0 1 0 0 0 0 0 0
0 −3.27 −.05 6 0 3.27 0 0 0
0 0 0 −3.3 3.3 0 0 0 0
0 0 −5.2 0 −12.5 0 0 0 0
0 0 0 0 0 0 1 0 0
0 −3.27 0 0 0 −3.27 −.05 6 0
0 0 0 0 0 0 0 −3.3 3.3
0 0 0 0 0 0 −5.2 0 −12.5

























B =

[

0 0 0 0 12.5 0 0 0 0
0 0 0 0 0 0 0 0 12.5

]

T

E =

[

0 0 −6 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 0

]

T

C =























0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 .545 0 0 0 −.545 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0























K =

[

1 .425 0 0 0 0 0 0 0
−1 0 0 0 0 .425 0 0 0

]

4.   Unknown Input Observer for the Power
System

Let us design the Unknown Input Observer for the power
system. First check the rank condition for E and CE:
If rank(CE) = rank(E), an UIO exists. Indeed,
rank(CE) = rank(E) = 2. Check the observability: If
(C,A1) observable, an UIO exists and K1 can be computed
using pole placement. Since rank(obsv(A1, C)) = 9,
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(C,A1) is observable, an UIO exists and K1 can be com-
puted. Compute F and K : F = A1 − K1C,K =
K1 + K2 = K1 + FH . The structure for the full-order
observer described in (2) is as follows:

ż = −30 I z +

























0 0
0 0
0 0

12.5 0
0 0
0 0
0 0
0 12.5
0 0

























u

+

























0 0 0 0 0 0.54 −0.54 30
0.81 0.18 0.34 0 0 30 0 0
0 0 0 0 0 0 0 0
0 0 0 26.66 0 0 0 0

−4.23 −0.97 −1.78 0 0 −5.31 0 −12.5
0.18 0.81 −0.34 0 0 0 30 0
0 0 0 0 0 0 0 0
0 0 0 0 26.66 0 0 0

−0.97 −4.23 1.78 0 0 0 −5.31 12.5

























y

x̂ = z +

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.81 0.18 0.34 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.18 0.81 −0.34 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























y

As an example, the errors between the actual values
of the first four outputs and their estimated values are given
in Fig. 3.
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Figure 3. Errors between the actual outputs and the esti-
mated outputs

5.   Robust Sensor Fault Detection and Isola-
tion Scheme Based on UIOs

The fault isolation problem is to locate the fault or to de-
termine which sensor has failed. In this study, a structured
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Figure 4. A robust sensor fault isolation scheme

residual set [9], in which each residual is sensitive to cer-
tain group of faults and insensitive to others, is designed
for fault isolation. A Generalized Observer Scheme (GOS)
[9], which is a commonly accepted robust and UIO-based
sensor fault isolation scheme (Fig. 4), is applied.

Assuming that all actuators are fault-free, the system
equations [9] are as follows:

ẋ = Ax + Bu + Ed

yj = Cjx + f j
s

yj = cjx + fsj

(11)

where cj ∈ R1×n is the jth row of the matrix C, Cj ∈
R(m−1)×n is obtained from C by deleting jth row cj ,
yj ∈ R1×m is the jth component yj . Then, m UIO-based
residual generator is constructed as:

żj = F jzj + T jBu + Kjyj

rj = (I − CjHj)yj + Cjzj for j = 1, 2, . . . m
(12)

Each residual generator is driven by all inputs and all
outputs except one output. When all actuators are fault-free
and a fault occurs in the jth sensor, the residual will satisfy
the following isolation logic:

‖rj‖ < T
j
SFI

‖rk‖ ≥ T k
SFI for k = 1, . . . j − 1, j + 1, . . . m

where T
j
SFI ' s are isolation thresholds and ‖rj‖' s are the

Euclidean norms of the residuals.

6.   Fault Detection and Isolation Logic Design

A fault indicator logic system is designed to determine
which sensor is faulty. This system is based on the com-
parison of the threshold exceeds. The GOS method allows
one to detect the faulty sensor by checking if the residuals
have exceeded the thresholds. In the design, threshold ex-
ceeds are indicated as “logic 1” and otherwise “logic 0”.
For example, if a fault occurs in “Sensor 1” the “Residual
1” doesn' t exceed the threshold and indicated as “logic 0”
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and other residuals exceed the thresholds and are indicated
as “logic 1”. As an example, the designed ”Sensor Fault
Indicator Logic Block” is shown in Fig. 5 for a system with
three sensors. The interior constitution of the “Sensor Fault
Indicator Logic” subsystem can be seen in figure 6.
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Sensor_Fault2

Sensor_Fault3

Sensor Fault Indicator
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Figure 5. Sensor fault indicator logic when a fault occurs
in Sensor 1.
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Figure 6. Interior constitution of the sensor fault indicator
logic subsystem

7.   Simulation Results of the Sensor Fault De-
tection and Isolation for LFC

The designed system can be modelled with Simulink as in
Fig 8. The correct measurements and feedback signals of
frequency and power interchanges are very important for
the effectiveness of LFC. Therefore, in the simulation, as an
example, a failure in Sensor 1 (measuring f1: the frequency
of area 1) is assumed to have occurred. Simulation results
are presented for Sensor 1 failure occurring at 5 s. Figure 7
shows the squared residuals when a fault has occurred in
Sensor 1.
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Figure 7. Squared residuals when a fault occurs in Sensor 1.

8. Conclusion

In this paper, a robust sensor fault detection and isolation
in load frequency control in power systems by unknown in-
put observers has been designed and applied. Simulations
have been performed for the dynamical model of a power
control system composed of two areas. By using residuals,
the designed “Fault Detection and Isolation Logic” system
shows the operator which sensor is faulty. The proposed
scheme is able to detect and isolate sensor faults. In future
work, the scheme will be extended to detect and isolate the
actuator faults as well.
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