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ABSTRACT 
Due to decentralized generation power flow situation in 
low and mean voltage (MV) level grids has changed 
which now complicates estimation of grid condition. A 
satisfying identification necessitates installation of 
measurement technique because for historical reasons 
measurement devices are sparsely distributed in MV level 
grids.  
 
In this paper a new approach to quickly find applicable 
and cost-effective measurement facilities by using 
sensitivity analysis and integer optimization algorithms is 
introduced. Therefore grid equations are remodelled to fit 
measurable values. After that sensitivity indices are 
calculated to find optimal measurement locations and 
measurands.  
In this paper nodal measurements of current and power 
are focused. 
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1.  Introduction 
 
The increasing amount of decentralized generators results 
in dramatically changed demands on mean voltage level 
grids originally planned as distribution grids with one way 
power flow direction [1]. The high variability of load and 
generation especially feeders based on renewable sources 
like global irradiance or wind speed results in fast 
changing, hardly determinable and possibly illegal grid 
states. Due to missing measurement technique equipment 
overstressing cannot be detected adequately so 
considering even more small feeders measurement 
devices have to be installed as a precaution.  
 
Integer programming algorithms are used to find valuable 
and cost-effective measurands and locations for grid 

condition identification. Unfortunately these algorithms 
are extremely time-consuming and often unable to find an 
adequate solution within tolerable time. That is why 
alternative methods are needed and investigation on 
sensitivity analysis is done. 
 
 
2.  Sensitivity Analysis 
 
Sensitivity analysis is used to systematically determine 
the effect of any given variables on any interesting 
variables. Linearization at the operation point results in a 
sensitivity matrix whose coefficients show the impact of 
any influencing variable on all state variables which are 
nodal voltages magnitudes and phases in electrical energy 
supply grids. Measurable influence variables are 
magnitudes of root mean square (rms) values of current, 
voltage and apparent power as well as active and reactive 
power. In the following subsections accordant sensitivity 
matrices are developed. 
 
2.1 Nodal currents 
 
As mentioned above solely magnitudes of rms-values of 
current are measurable. The complex nodal current 
equation [2] 

KK K K=Y u i   (1) 

has to be reformed into the nonlinear equations 
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which can now be linearized at the operation point 
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The Jacobian  is build as shown in eq. (4).  I,KKJ
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and linearized at the operation point 
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The inverse of slack reduced  consists of four 
sensitivity matrices. 
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and 
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Due to missing measured values of phase angles only 
 and  are needed. Eq. (6) and (7) show that 

grid condition identification based on nodal currents is 
faulty even if all nodes are equipped with measurement 
devices. 

δKIKA UKIKA The inverse of the slack reduced jacobian  
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 consists as well of four sensitivity matrices such that 
2.2 Nodal active and reactive power 
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Complementary to nodal currents one can assume that 
active and reactive power are measurable. The nonlinear 
complex nodal power equation [2] 

and 
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3.  Interpretation Eq. (13) and (14) show that measuring active and reactive 
power at all nodes is accurate but as well very expensive.  
 3.1 Sensitivity Index 
2.3 Nodal apparent power  
 The coefficient  of a sensitivity matrix A states the 

effect of influence variable j on state variable i. Its 
magnitude shows the strength of influence while its sign 
expresses the direction of alteration.  

ija
Nodal apparent power can easily be calculated if nodal 
voltage and current is known or measured. Due to missing 
information on phase angles calculation of apparent 
power sensitivity matrices is analogue to nodal current 
sensitivity matrix calculation.   

To evaluate the quality of each measurand its sensitivity 
index is calculated by summing magnitudes of 
coefficients of each corresponding column. A higher 
sensitivity index denotes a better measurand. Secondary 
the index shows operation point dependency as well. 

Eq. (8) is reformed into 
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3.2 Error estimation 
 

and linearized at the operation point such that  
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Assuming at most one measuring device per location the 
actual error can be calculated with the conglomerated 
sensitivity matrix A, the binary device vector x, the 
measured or forecasted influence vector m and the 
deviation of nodal voltages. 
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Since the actual deviation is unknown it is best 
approximated by  

The slack reduced inverse of  consists again of four 
sensitivity matrices  
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3.3 Optimization 

Due to missing phase angle information only  and 
 are of interest. That is why apparent power 

measurement is faulty as well even if all nodes are 
equipped with measurement facilities analogue to nodal 
currents.  

δKSKA

UKSKA
 
The optimization problem can be formulated as follows 
[3], [4]: 
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20 kV 

9 
with the objective function c containing the investment 
cost of each measurement device and the tolerable error 

. Optimization algorithms can be looked up in 
references and will not be expatiated in this paper. 

maxf 8 
1 

2 MVA
 1 MVA 
Assuming a single loop grid of 50 nodes the algorithm has 
to handle 3.8*1030 possible solutions considering nodes, 
terminals and the mentioned different measurands. Even 
this simple problem is impossible to be solved in a 
tolerable amount of time. To decrease optimization time a 
good starting vector is necessary. It can be obtained by 
adding devices, sorted by its weighted sensitivity index, to 
the binary vector x until the constraint is satisfied. The 
resulting x now needs only few modifications depending 
on the objective function which can be calculated quickly.  

7 
0.7 MVA 

2 
2 MVA 

6 
2 MVA

3  
 5 1 MVA 4.  Simple example 

0.5 MVA  
Given are the demonstration grid in Fig.1 and its 
parameters in Table1. The operator wants to cost-
effectively identify grid condition by installing either 
current or apparent power rms indicators. 4 
 
Furthermore it is assumed that investment cost per 
ammeter is 1 unit, investment cost per power meter is 1.5 
units and the operator tolerates a maximum error of 0.2 % 
which is about 23 V in 20-kV-grids. 

d 

 node Cu

1 0.7
2 1.4
3 1.8
4 0 
5 2.0
6 1.8
7 1.4
8 0.7
9 0 

Due to entirely missing measurement equipment grid 
condition is completely unknown except the slack voltage 
at node 9 which can be assumed as 20 kV. The given 
nodal powers in Fig.1 can be obtained from substation 
transformer labels and are the highest possible values. 
 

Table 1 Parameters of all lines 
length 1 km 
r’ 0.2 Ohm/km 
x’ 0.15 Ohm/km 
c’ 300 nF/km  

As to be see
is added to
satisfy the
measuremen
vector leads
as starting v

 
As mentioned above the actual nodal powers and currents 
are unknown. Investigation is done to examine which 
powers or accordant currents have to be measured. Thus 
sensitivity matrices are calculated. The indices are given 
in Table 2. 

  
In this case
found beca
ammeters. S
within 1024
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Fig. 1 demonstration gri
Table 2 Sensitivity indices 
rrent 
SI Power SI Weighted 

Current SI 
Weighted 
Power SI 

994 0.7991 40,1 23,1 
002 1.4004 140,6 80,9 
009 1.8012 90,4 52 

0 0 0 
013 2.0019 50,3 28,9 
011 1.802 181 104 
001 1.4002 49,2 28,3 
995 0.7992 80,1 46,1 

0 0 0 

n in Table2 measurement of current at node 6 
 x. However this starting vector does not 
 constraints so according to Table2 
t of current at node 2 is added. The new 
 to a maximum error of 9.4 V and thus is used 
ector.  

 the optimal measurement vector is already 
use power meters are more expensive than 
ensitivity analysis avoided optimum search 

 solution. 



To show operation point dependency a set of 60 different 
load scenarios was generated containing all operation 
points varying from idling to full load. Fig.2 shows 
operation point dependency of nodal currents and Fig.3 of 
nodal apparent power. One can see that changes in 
sensitivity only take place when nodal values change sign 
or are set to zero. 
 

 
Fig. 2 operation point dependency of current sensitivity 

index 
 

 
Fig. 3 operation point dependency of power sensitivity 

index 
 
 
5.  Conclusion 
 
Sensitivity analysis is a fast and systematic way to find 
applicable and cost-effective measurands and 
measurement locations for grid condition identification. 
All measuring possibilities are rated and can be chosen by 

varying constraints. The need of integer optimization and 
therewith calculation time is reduced to a minimum.  
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