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ABSTRACT

Due to decentralized generation power flow situation in
low and mean voltage (MV) level grids has changed
which now complicates estimation of grid condition. A
satisfying identification necessitates installation of
measurement technique because for historical reasons
measurement devices are sparsely distributed in MV level
grids.

In this paper a new approach to quickly find applicable
and cost-effective measurement facilities by using
sensitivity analysis and integer optimization algorithms is
introduced. Therefore grid equations are remodelled to fit
measurable values. After that sensitivity indices are
calculated to find optimal measurement locations and
measurands.

In this paper nodal measurements of current and power
are focused.
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1. Introduction

The increasing amount of decentralized generators results
in dramatically changed demands on mean voltage level
grids originally planned as distribution grids with one way
power flow direction [1]. The high variability of load and
generation especially feeders based on renewable sources
like global irradiance or wind speed results in fast
changing, hardly determinable and possibly illegal grid
states. Due to missing measurement technique equipment
overstressing cannot be detected adequately so
considering even more small feeders measurement
devices have to be installed as a precaution.

Integer programming algorithms are used to find valuable
and cost-effective measurands and locations for grid

582-023

217

condition identification. Unfortunately these algorithms
are extremely time-consuming and often unable to find an
adequate solution within tolerable time. That is why
alternative methods are needed and investigation on
sensitivity analysis is done.

2. Sensitivity Analysis

Sensitivity analysis is used to systematically determine
the effect of any given variables on any interesting
variables. Linearization at the operation point results in a
sensitivity matrix whose coefficients show the impact of
any influencing variable on all state variables which are
nodal voltages magnitudes and phases in electrical energy
supply grids. Measurable influence variables are
magnitudes of root mean square (rms) values of current,
voltage and apparent power as well as active and reactive
power. In the following subsections accordant sensitivity
matrices are developed.

2.1 Nodal currents
As mentioned above solely magnitudes of rms-values of

current are measurable. The complex nodal current
equation [2]

Yyg ug =iy (1)
has to be reformed into the nonlinear equations
_¢K] Oai | | Ux
: = f oK : s

| Pxn Ok U,
- ()

IKI 51(1 UKl

= [ S F1

_I Kn 51(” UKn

which can now be linearized at the operation point


nicholas



—401(1 1 _(pm,o ] —Awm ] [ Aoy, 1
A /, AS,
Pn | _| Do | | D | [ Tk | Jo | o 3)
[Kl IKI,O A]Kl fIK op AUK]
_IKn n _IKr/,O i L AIKn _ AUK/z

The Jacobian J, is build as shown in eq. (4).
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The inverse of slack reduced J . consists of four

sensitivity matrices.
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Due to missing measured values of phase angles only
Ay and A are needed. Eq. (6) and (7) show that

grid condition identification based on nodal currents is
faulty even if all nodes are equipped with measurement
devices.

2.2 Nodal active and reactive power

Complementary to nodal currents one can assume that
active and reactive power are measurable. The nonlinear
complex nodal power equation [2]
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is divided into real and imaginary part
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Eq. (13) and (14) show that measuring active and reactive
power at all nodes is accurate but as well very expensive.

2.3 Nodal apparent power

Nodal apparent power can easily be calculated if nodal
voltage and current is known or measured. Due to missing
information on phase angles calculation of apparent
power sensitivity matrices is analogue to nodal current
sensitivity matrix calculation.

Eq. (8) is reformed into
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sensitivity matrices
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Due to missing phase angle information only A, and
Ayesx are of interest. That is why apparent power

measurement is faulty as well even if all nodes are
equipped with measurement facilities analogue to nodal
currents.
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3. Interpretation
3.1 Sensitivity Index

The coefficient a; of a sensitivity matrix A states the

effect of influence variable j on state variable i Its
magnitude shows the strength of influence while its sign
expresses the direction of alteration.

To evaluate the quality of each measurand its sensitivity
index is calculated by summing magnitudes of
coefficients of each corresponding column. A higher
sensitivity index denotes a better measurand. Secondary
the index shows operation point dependency as well.

3.2 Error estimation

Assuming at most one measuring device per location the
actual error can be calculated with the conglomerated
sensitivity matrix A4, the binary device vector x, the
measured or forecasted influence vector m and the
deviation of nodal voltages.
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Since the actual deviation is unknown it is best
approximated by
I 51,0 _51,AP ]

1) .5 !

...... BB = 4 m 1)

UI,O _UI,AP 1
_Un,o _Un,AP
SO

xl
fi.=4 —E|m (22)
xm

with
Jei 2 fia (23)

3.3 Optimization

The optimization problem can be formulated as follows

(31, [4]:



min(cT ~x)

™ (24)
’ x<f +Am

max

s.t: A

m

n

with the objective function ¢ containing the investment
cost of each measurement device and the tolerable error
fiae - Optimization algorithms can be looked up in

references and will not be expatiated in this paper.

Assuming a single loop grid of 50 nodes the algorithm has
to handle 3.8%10°° possible solutions considering nodes,
terminals and the mentioned different measurands. Even
this simple problem is impossible to be solved in a
tolerable amount of time. To decrease optimization time a
good starting vector is necessary. It can be obtained by
adding devices, sorted by its weighted sensitivity index, to
the binary vector x until the constraint is satisfied. The
resulting x now needs only few modifications depending
on the objective function which can be calculated quickly.

4. Simple example

Given are the demonstration grid in Fig.1 and its
parameters in Tablel. The operator wants to cost-
effectively identify grid condition by installing either
current or apparent power rms indicators.

Furthermore it is assumed that investment cost per
ammeter is 1 unit, investment cost per power meter is 1.5
units and the operator tolerates a maximum error of 0.2 %
which is about 23 V in 20-kV-grids.

Due to entirely missing measurement equipment grid
condition is completely unknown except the slack voltage
at node 9 which can be assumed as 20 kV. The given
nodal powers in Fig.1 can be obtained from substation
transformer labels and are the highest possible values.

Table 1 Parameters of all lines

length 1 km

v’ 0.2 Ohm/km
x’ 0.15 Ohm/km
c’ 300 nF/km

As mentioned above the actual nodal powers and currents
are unknown. Investigation is done to examine which
powers or accordant currents have to be measured. Thus
sensitivity matrices are calculated. The indices are given
in Table 2.
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Fig. 1 demonstration grid

Table 2 Sensitivity indices

Current Weighted | Weighted
e SI It Sl Currint SI Powir SI
1 0.7994 0.7991 40,1 23,1
2 1.4002 1.4004 140,6 80,9
3 1.8009 1.8012 90,4 52
4 0 0 0 0
5 2.0013 2.0019 50,3 28.9
6 1.8011 1.802 181 104
7 1.4001 1.4002 49,2 28,3
8 0.7995 0.7992 80,1 46,1
9 0 0 0 0

As to be seen in Table2 measurement of current at node 6
is added to x. However this starting vector does not
satisfy the constraints so according to Table2
measurement of current at node 2 is added. The new
vector leads to a maximum error of 9.4 V and thus is used
as starting vector.

In this case the optimal measurement vector is already
found because power meters are more expensive than
ammeters. Sensitivity analysis avoided optimum search
within 1024 solution.



To show operation point dependency a set of 60 different
load scenarios was generated containing all operation
points varying from idling to full load. Fig.2 shows
operation point dependency of nodal currents and Fig.3 of
nodal apparent power. One can see that changes in
sensitivity only take place when nodal values change sign
or are set to zero.

sensitivity index

operation points 8
node number

Fig. 2 operation point dependency of current sensitivity
index

sensitivity index

operation points 0 8

node number

Fig. 3 operation point dependency of power sensitivity
index

5. Conclusion

Sensitivity analysis is a fast and systematic way to find
applicable and  cost-effective  measurands  and
measurement locations for grid condition identification.
All measuring possibilities are rated and can be chosen by
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varying constraints. The need of integer optimization and
therewith calculation time is reduced to a minimum.
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