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ABSTRACT 
This paper presents a novel technique for tracking voltage 
flicker occurring in electric power systems. Voltage 
flicker tracking is essential for electric power quality 
analysis. The instantaneous voltage flicker magnitude, 
frequency and phase are estimated using Kalman filtering 
technique.  This approach is based on expressing voltage 
flicker as a discrete time linear dynamic system model 
using flicker parameters as the system parameters.  An 
extended state space model is adapted for the Kalman 
filter to estimate the parameters.  Fuzzy rule-based logic 
is used to tune-up the system-noise and measurement-
noise levels by adjusting their covariance matrices using 
flicker measurements. 
 
KEY WORDS 
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1. Introduction 
 
A major problem in electric power quality is voltage 
flicker.  It is defined as repetitious variation in the electric 
voltage supply that results in a repetitious fluctuation in the 
luminance of a light source which is inconvenient to the 
human eyes.  Voltage flicker has a detrimental effect on 
electrical and electronic devices.  It may result in 
malfunction, failure or mis-operation of sensitive 
equipment such as computers, electronic control and 
protection devices, and equipment used for medical 
purposes.  Moreover, frequent exposure of electric and 
electronic devices to voltage flicker results in reduction of 
the life span of such devices. 
 
Voltage flicker is produced by large non-linear loads that 
cause repetitious variation in the system voltage envelope.   
There are many sources of voltage flicker ranging from 
severe load changes due to arc furnaces, or arc welders, to 
mild variation caused by factors like starting an industrial 
motor, pumps, elevators, fans, etc [2].  Such severe 
changes of load cause a small recurring voltage variation 
of about ±10% in amplitude and 1-50% in frequency of the 
system voltage envelope. IEEE has established flicker 
standards [1] which demonstrate that frequencies from two 
to ten fluctuations which result in approximately 0.5% 
voltage amplitude modulation will produce irritation to the 

observer.  Different types of devices are currently used to 
mitigate the effect of sensitive equipment to the voltage 
flicker [2].  Effective design and implementation of 
mitigation devices require accurate estimation of the 
voltage flicker levels. 
 
In the literature several techniques have been developed to 
track and evaluate voltage flicker.  A general survey of 
flicker analysis and methods for electric arc furnace is 
presented in [3].  Fast Fourier transform (FFT) techniques 
are used to measure voltage flicker levels of stationary 
signals [4, 5].  For non-stationary signals, two techniques 
are used to track and measure instantaneous flicker level.  
These are: the least absolute value (LAV) state estimation 
technique [6] and the Kalman filtering technique (KF) [7].  
The LAV technique assumes the flicker frequency is 
known in advance; however, in practice, this assumption is 
not necessarily true. The KF technique suffers from heavy 
computational burden, and it does not provide an accurate 
adjustment of its model parameters.  The wavelets 
transform technique is also used to analyze voltage flicker 
[8, 9].  However, like the KF technique, this technique 
suffers from excess computation. It also has extensive 
difficulties with deciding upon candidate wavelets. The 
Teager energy operator and the Hilbert transform are both 
used to track voltage flicker in the presence of the 
deviation of supply frequency [10].  However, the 
technique suffers from instability when the input voltage 
maintains high frequency components. 
 
This paper proposes a new and effective technique for 
tracking and estimating voltage flicker for power quality 
analysis and implementation of flicker mitigation and 
compensation devices.  A combined fuzzy-Kalman Filter 
approach is developed in this paper. A flicker voltage is 
modeled as a discrete time linear difference equation that 
has flicker amplitude, frequency and phase as parameters.  
An extended discrete time state space model that extends 
the state vector with the system parameters as additional 
states is adapted for the Kalman filter in order to estimate 
the parameters.  Fuzzy rule-based logic is employed to 
tune-up the system-noise and measurement-noise levels by 
adjusting their covariance matrices using flicker 
measurements.  The model considers measurements as 
fuzzy values, each belonging to a fuzzy set of values 
represented by a triangular membership function.   
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The rest of the paper is organized as follows:  Section 2 
presents fuzzy load modeling.  Kalman Filter 
formulations for fuzzy parameter estimation along with 
fuzzy IF-THEN rule based logic for coefficient estimation 
error are developed in Section 3. The fuzzy rule-based 
inference is introduced in Section 4.  Model validation 
and results are discussed in Section 5. The conclusion is 
presented in Section 6. 
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Where:  
T  is the sampling period 
a0 = -1 
a1 =  2 cos(ωfT) 

 b0 = 0  
 b1 =  -Af  (cosϕf  cosωfT - sinϕf  sinωfT ) 
2. Voltage Flicker Model b2 =  Af  cosϕf  
  

The sampling period, T, must be at least twice the system 
frequency; Yf(z) is the z-transform of the yf(k), and U(z) is 
the z-transform of a unit impulse function (u(k) = 1 for 
k=0, zero otherwise) exciting input.  The discrete time 
difference equation of Eq. (4) is described in Eq. (5). 

Eq.(1) shows a system signal Eq.(2) modulated with a 
random flicker signal Eq.(3).  
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 Where A0, ω0, and θ0 are constant system parameters 

representing system amplitude, frequency and phase angle, 
respectively.  Af, ωf, and θf are the voltage flicker 
amplitude, frequency and phase angle, respectively. A 
typical waveform is shown in Fig. 1 with 

])4/)5.2(2cos(05.01[)6/)50(2cos(0.1)( ππππ +++=ty
 , t is in msec.  

By proper choice of dynamic system states, a state space 
model for Eq. (5) is derived as follows: 
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An extended state space model is formulated with 
parameters as additional states, [11]: 
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(7)Fig. 1 Typical Flicker Voltage Waveform y(t). 

  
2.1 Linear State Space Estimation Model 
 
The essence of the voltage flicker estimation problem is to 
estimate the voltage flicker envelope such as the one given 
in Fig. 1.   The voltage flicker envelope is modeled as 
amplitude modulated voltage waveform Eq. (1) with the 
sinusoid voltage flicker waveform Eq. (3) as an amplitude 
modulating signal. The system voltage waveform Eq. (2) 
parameters are know and constant.  Hence, the estimation 
problem reduces to estimate the voltage flicker parameters 
of Eq. (2).  These are the voltage flicker amplitude Af, 
frequency ωf and phase ϕf.  For the purpose of voltage 
flicker parameter estimation, a discrete z-transform linear 
time model for Eq. (3) is given in Eq. (4), [12].  

 
In the following Section, the Kalman Filter algorithm is 
used to obtain optimal estimates of the states of the model 
in Eq.(7).  After introducing the necessary basic Kalman 
Filter formulation, fuzzy logic is used to tune-up system-
noise and measurement-noise levels covariance matrices of 
the unknown system parameters.  
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 (12)3. Fuzzy Parameter Estimation Using 
Kalman Filtering  
 Estimate new state with new measurement z(k) : 

)The Kalman Filter Algorithm is a well-established 
technique for estimating the parameters of stationary 
random processes [11].  It is suitable for estimating 
stochastic processes producing optimal estimates in the 
presence of noise. It formulates the parameter estimation 
problem as state-space dynamic equations that include 
system as well as measurement uncorrelated Gaussian 
white noises.  The estimates produced are optimized in the 
least square sense by minimizing error equations 
containing covariance matrices of both noises.  Only 
necessary derivations of the filter and its recursive 
equations that are suited for the voltage flicker state model 
in Eq. (7) are presented.    

[ )()()()()()()1( kxkCkykKkxkAkx ])) −+=+  (13)
 
Covariance error update: 
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An intelligent choice of the initial estimate of the state 0x)  
and its covariance error P0 enhances the convergence 
characteristics of the Kalman Filter. A few samples of 
measurement y(k) can be used to get a weighted least 
square as initial values for 0x)  and P0:   
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3.1 The Basic Kalman Filter 
 
A discrete time-varying state-space dynamic model is 
considered for implementing the Kalman Filter for the 
rule-based fuzzy voltage flicker parameter estimation 
problem.  The detailed derivation of Kalman filtering can 
be found in various references in the literature [11].  Given 
the discrete state equations Eq.(8): 

 
where z0 is (m m1) x 1  vector of m1 measured samples and 
H is (m m1) x n matrix. 
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x(k +1) = A(k) x(k) + w(k) 
 y(k)    = C(k) x(k) + v(k)  

 
  (8)

  
3.2 Kalman Filter Estimation Algorithm Where: 
 x(k)  is n x 1 system states. 
The dynamic system of Eq. (8) is used with the following 
definitions:  

A(k)  is n x n time varying state transition  matrix. 
y(k)  is m x 1 measurement vector. 

1. State transition matrix, A(k), defined in Eq.(7). C(k)  is m x n time varying output matrix. 
w(k)  is n x 1 system error. 
v(k)  is m x 1 measurement error. 
 
The noise vectors w(k) and v(k) are uncorrected white 
noises that have: 
 
1. Zero mean:    E[w(k)] = E[v(k)] = 0 (9) 

3. The state vector, x(k), consists of  the seven variables 
described in Eq. (7). They are two system states and 
five flicker voltage parameters.   

2. The covariance error matrices, Q(k) and G(k), are 
diagonal positive semi-definite and positive definite 
matrices, respectively. They are adjusted using the rule-
based fuzzy logic described in Section 4.   

2. No time correlation:     
 E[w(i) wT(j)] = E[v(i) vT(j)] = 0,   for i ≠ j (10) 

4. The output matrix C(k) is the 1 x 7 time varying vector, 
described in Eq. (7). It relates the measurement flicker 
voltage to the system states.  3. Known covariance matrices (noise levels):  

   E[w(k) wT(k)] = Q(k)  
   E[v(k)  vT(k)] = G(k)  (11) 

 
 
4. Fuzzy Rule Based Inference  

where Q(k) and G(k) are positive semi-definite and positive 
definite matrices, respectively.  

 
The fuzzy set theory was first introduced by Zadeh 1956 
[13].  Measured data and input signals are inevitably 
loaded with errors due to measuring instrument and human 
collection errors.  The theory of fuzzy sets describes 
variables in a range of values rather than as a single crisp 
value, thus enabling efficient description of unreliable and 
inaccurate data.   

 
The basic discrete time-varying Kalman Filter algorithm is 
given by the following set of recursive equations.  Given 
an initial estimate of the state vector )0(0 xx )) = and its 
covariance error matrix, P0= P(0), set k=0, then 
recursively compute: 

  
Electric voltage flicker depends on a collection of 
unpredictable operating and load conditions.  When it 

Kalman gain: 
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The covariance of the system states error Q(k) is increased 
according to the noise level of the flicker signal and its rate 
of change.  Sudden peak level noise in measurement is 
compensated for using the measurement covariance matrix 
G(k).  The fuzzy rules for tuning gii, i= 1, 2, …, 9,  
according to |yf(k)| and | | are summarized in Table 1. )(ky f&

occurs, it produces nonlinear behavior on the system 
voltage and frequency which is manifested as the voltage 
flicker.  Moreover, any parametric model that strives to 
track voltage flicker is affected by inevitable sudden load 
conditions that are modeled as sudden varying random 
noise.  In this section, the state space flicker model 
parameters Eq. (7) are estimated using the Kalman filter 
with white noises Eqs. (9-11). However, fuzzy rule-based 
logic is used to tune the level of the flicker model noises 
Q(k) and G(k). No matter how much effort is applied to 
strive for an accurate flicker model, un-modeled factors or 
uncertainties exist, that affect the dynamics of the state 
model.  Such factors are compensated for by introducing 
system and measurement white noises, w(k) and v(k), 
respectively. However, these noises change in magnitude 
according to the variations in the power system conditions 
and load.  Fuzzy logic is used to tune-up noises levels by 
adjusting the covariance matrices Q(k) and G(k), 
respectively.  The inputs of the fuzzy logic machine are the 
measurements of the flicker voltage yf(k) and its rate of 
change .  The outputs of the fuzzy machine are the 
diagonal elements of the covariance matrices Q(k) and 
G(k).  

)(ky f&

  
Table 1.  Input-Output Fuzzy Logic Rules for 

gii. 
| | )(ky f&

 S M L 
S VS M L 
M S L L 

  |
y f(

k)
| 

L M L VL 
 
The above rules are formed and reflect our experimental 
experiences with the voltage flicker waveforms and their 
noises. Typical voltage flicker envelopes such as the one 
presented in Fig. 1 show that there is a greater dependency 
of sudden noises on the rate of change of measured flicker 
waveforms than on the changes in the flicker voltage itself. 
Accordingly, the fuzzy rules of Table 1 are established 
emphasizing |yf(k)| over | |.   )(ky f& 

4.1 Fuzzy Rule Based Logic   4.2 Fuzzy Logic Inference Machine In the measurement equation of state model Eq. (7), yf(k) 
has a direct relation to x2(k) and b2(k).  Therefore, sudden 
noises in x2(k) and b2(k) are compensated for using q22 and 
q22, respectively. Moreover, the second state equation is 
relates x2(k+1) to a1(k) and b1(k). Hence q44, q66 and q77 are 
use to adjust a1(k), b1(k), and b2(k), respectively.  The 
fuzzy rules for tuning qii, i= 2, 4, 6 and 7, according to 
|yf(k)| are summarized in Fig. 2.  

 
Inference in the noise covariance is formed using a rule-
based fuzzy logic inference machine Fig. 4 described 
below. 
 

 

Crisp inputs 

Fuzzy rule 
based logic 
(Fuzzifier)

 
 Defuzzifier 

 yf (k)

)(ky f&

Fuzzy output Crisp output

Qf(k) 

Input Fuzzy 
linguistic sets  

Gf(k) 

Q (k)

G (k)
 

 
If   (|yf(k)| is  Small)  then  (qii  is  Small). 
If   (|yf(k)| is  Medium)  then  (qii  is  Medium). 
If   (|yf(k)| is  Large)  then  (qii  is  Large). 

Fig. 2. Inference fuzzy rules for Covariance Q(k) 
affected by magnitude of flicker voltage. 

Fig. 4.  Fuzzy Logic Inference Machine. 
 

 The fuzzy logic inference machine accepts fuzzified 
linguistic fuzzy variables as input.  The two inputs are the 
voltage magnitude |yf(k)| (in p.u.) and the magnitude of its 
rate of change | |.  The outputs of the Fuzzifier are 
fuzzy covariance matrices Q

)(ky f&

f(k), Gf(k) which have fuzzy 
linguistic variables on their diagonal according to the rules 
of Section 4.1. The fuzzy covariance matrices are fed to 
the Defuzzyfier which converts them to crisp covariance 
matrices that are used in the Kalman filtering parameter 
estimation. 

Similarly, the rate of change of the flicker voltage, , 
is related to x

)(ky f&

)k

1(k).  Thus, sudden noise in x1(k) is 
compensated for using q11. The first state equation relates 
x1(k+1) with to a0(k) and b0(k). Hence q33 and q55 are use to 
adjust a0(k) and b0(k), respectively.  The fuzzy rules for 
tuning qii, i= 1, 3 and 5, according to | | are 
summarized in Fig. 3. 

(y f&

 
If   (| | is  Small)  then  (q)(ky f& ii  is  Small). 

If   (| | is Medium)  then  (q)(ky f& ii  is Medium). 

If   (| | is  Large)  then  (qii is  Large). )(ky f&

 
4.2.1 Fuzzifier 
Each input and output fuzzy linguistic variable belongs to a 
set of values that are represented by a triangular 
membership function in the range [0, 1], which corresponds 
to the degree to which the input belongs to the linguistic 
class. Input and output linguistic variables and their 
membership functions are defined in Fig. 5. The 

Fig. 3. Inference fuzzy rules for Covariance Q(k) 
affected by magnitude of rate of change of flicker 

voltage. 
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abbreviations in the Figures refer to: VS = Very Small, S = 
Small, M = Medium, L = Large and VL = Very Large. 
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Fig. 5. Input and Output Membership Functions. 

 
The max-min composition based on the Mamdani 
Implication Method of inference is used to implement the 
fuzzy rules.  For a set of r disjunctive rules, the aggregated 
output membership function is given by:  
 

ri

yyq kAkAkkB

,,2,1

)}],(,)([min{max)( 21 21

L=

= µµµ
 

 
(17) 

 
where kAAkBk and

21
, µµµ  are output, first input, second 

input membership functions, respectively; q, y1 and y2 are 
the output and first input, second input, respectively.   
 
Applying Eq. (17) to the fuzzy rules in Table 1 is best 
illustrated by a simple graphical example. The two inputs 

are taken to be: |yf(k)| = 0.4 p.u. and | | = 0.7 p.u., as 
illustrated in Fig. 6.  The first and second rows of Fig. 7 
refer to the two inputs and their minimum (min) fuzzy 
output of Rule 2 and Rule 6, respectively.  The last row 
shows the maximum (max) of the two (min) fuzzy outputs.  
The extension for more than two rules is straightforward as 
given by Eq. 17.   Up to this point, it should be noted that 
the aggregate output membership function in Fig. 7 defines 
a set of values [3, 12] for the output, but it does not define 
the outputs crisp (center) value. 

)(ky f&

 
4.2.2 Defuzzifier 
We next demonstrate the computation of the crisp output.  
After obtaining the output membership function using the 
max-min method, the output crisp (center) value is 
evaluated using the “defuzzification” process. Refer to Fig. 
4. The centroid defuzzification method is used to convert 
the fuzzy output to a crisp one [14].   
 

 
 

 
Fig. 6.  Fuzzifier Inputs 
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Fig. 7. Illustration of graphical (max-min) inference method. 
 
 
 

5. Testing Proposed Technique and Results  

Fig. 8. Crisp value using the centroid defuzzification 
method. 

 
To illustrate the proposed flicker model of Section 2.1 and 
the fuzzy ruled-based Kalman filter technique of Section 4, 
we use a simulated flicker waveform Eq. (18) having a 50 
Hz system frequency, a 240 volts amplitude, and a π/4 
radians phase angle. The aforementioned parameters are 
known constant system parameters.  The chosen 
modulating flicker signal has a 5 Hz frequency, a 10 volts 
amplitude and a π/6 (≈5.236) radians phase angle.    
 

])6/)5.2(2cos(10)( ππ +=ty f  (18) 

  
To illustrate the point, the crisp value of the fuzzy output 
in Fig. 8 is the centroid (center of area) of the graph.  The 
centroid is computed to be qii = 7.92 and illustrated in Fig. 
8.  
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Table 2. Sample of the Kalman Filter Iterations 
for Parameter Estimation. 

k x1 x2 a0 a1 b0 b1 b2 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 -6.9920 0.0000 0.0000 0.0000 4.2768 4.3301

2 0.0000 12.7388 0.0000 1.6392 0.0000 5.4606 5.4714

3 -4.4179 5.6847 -0.6602 1.6164 -0.0762 5.8045 5.7790

4 -3.6996 4.2602 -0.6793 1.6167 0.0048 5.8076 5.7814

5 -2.8053 2.8264 -0.6897 1.6185 0.0433 5.6865 5.7034

6 -1.8133 1.3499 -0.7006 1.6225 0.0746 5.5630 5.6594

7 -0.7460 -0.1427 -0.7136 1.6305 0.1000 5.4978 5.6952

8 0.3818 -1.6230 -0.7295 1.6441 0.1160 5.5075 5.8117

9 1.5551 -3.0688 -0.7479 1.6643 0.1174 5.5828 5.9885

10 2.7487 -4.4612 -0.7670 1.6899 0.1006 5.7053 6.2008

11 3.9194 -5.7771 -0.7839 1.7173 0.0672 5.8563 6.4277

12 5.0102 -6.9802 -0.7961 1.7417 0.0252 6.0209 6.6544

13 5.9685 -8.0253 -0.8031 1.7600 -0.0157 6.1884 6.8714

14 6.7597 -8.8697 -0.8060 1.7718 -0.0490 6.3515 7.0731

15 7.3665 -9.4825 -0.8064 1.7783 -0.0725 6.5053 7.2564

16 7.7820 -9.8455 -0.8057 1.7812 -0.0872 6.6471 7.4199

17 8.0042 -9.9511 -0.8048 1.7823 -0.0948 6.7749 7.5632

18 8.0331 -9.8000 -0.8044 1.7824 -0.0973 6.8875 7.6861

19 7.8710 -9.3992 -0.8047 1.7824 -0.0961 6.9842 7.7891

20 7.5225 -8.7615 -0.8058 1.7827 -0.0924 7.0650 7.8730
… … … … … … … … 

555 -9.0115 9.6479 -0.9864 1.9617 -0.0055 7.7433 8.6289

556 -9.5283 9.9368 -0.9864 1.9617 -0.0055 7.7434 8.6290

557 -9.8105 9.9811 -0.9865 1.9617 -0.0055 7.7435 8.6291

558 -9.8510 9.7796 -0.9865 1.9617 -0.0055 7.7436 8.6292

559 -9.6489 9.3373 -0.9865 1.9617 -0.0055 7.7437 8.6293 

560 -9.2093 8.6651 -0.9865 1.9617 -0.0055 7.7438 8.6294 
… … … … … … … … 

Fig. 9.  Convergence of x1 and x2 
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Fig. 10.  Convergence of a0 and a1 
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The Kalman algorithm is used to estimate the three flicker 
signal parameters (Af , ff, and  ωf).    
 
The state space model of Eq. (7) is used to estimate the 
parameters.  Starting with zero initial conditions, a sample 
of the Kalman filter iterations is illustrated in Table 2.  
Figs. 9-11, illustrate the convergence of the system states 
and parameters.  Table 3 contains the steady state values 
of the parameters. The estimated three flicker parameters 
(Af , ff, and ωf) are computed as defined in Eq. (4) to be 
(9.984, 5.018, 0.521). 

Fig. 11.  Convergence of b0, b1 and b2 
 
6. Conclusion 
 
The paper presented a new technique for tracking the 
voltage flicker envelope.  The voltage flicker signal was 
modeled as a discrete time linear dynamic system with 
flicker voltage parameters.  An extended state space 
model is adapted for the Kalman filter to estimate the 
parameters.  Fuzzy rule-based logic is used to tune-up the 
system and measurement noise levels by adjusting their 
covariance matrices using flicker voltage and its rate of 
change measurements. The simulation results show the 
convergence of the estimated parameters using Kalman 
filter iterations. The resulted estimated parameters values 
are very close to the original values. 

 
Table 3. Converged Parameters 

a0 a1 b0 b1 b2 
-

0.9999 1.9752 -0.0001 -7.7729 8.6603 
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