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ABSTRACT 
A novel method for Ferroresonance detection presented in 
this paper. Using this method Ferroresonance can be 
discriminate from other transients such as capacitor 
switching, load switching, transformer switching. Wavelet 
transform is used for decomposition of signals and 
Learning Vector Quantizer(LVQ) Neural Network used 
for classification. Ferroresonance data and other transients 
was obtained by simulation using EMTP program. Using 
Daubechies wavelet transform signals has been 
decomposed till six levels. The energy  of six detailed 
signals that obtained by wavelet transform are used for 
training and trailing LVQ Neural Network. Results show 
that the proposed procedure is efficient in identifying 
Ferroresonance from other events. 
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1. Introduction 
 
Wavelet transform(WT) has been introduced rather 
recently in mathematics. It is linear transformation much 
like the Fourier transform, however it allows time 
localization of differences frequency components of a 
given signals; Short Time Fourier Transform(STFT) also 
partially achieves the same goal, but the fixed width 
windowing function is a limitation. In the case of wavelet 
transform, the analyzing functions called wavelets, will 
adjust the time width to the frequency in such a way that 
high frequency wavelets will be very narrow and lower 
frequency ones will be broader. In the area of power 
quality, several studies have been carried out to detect and 
locate disturbances using the wavelet transform as an 
useful tool to analyze interferences, impulses, notches, 
glitches, interruptions, harmonic, flickers, etc. of non 
stationary signals. [1,2] present an improvement to 
eliminate the effect of imperfect frequency respond of the 
filters in WT filter banks, and to better analyze sub-
harmonics. [3-8] present a similar approach for harmonics 
and flicker analysis, respectively. Other similar work 
using different mother wavelets is presented in [5]. [2] 
describes harmonic analysis with a trapezoid complex 
wavelet function and the associated trapezoid WT. [9,10] 

show a flicker analysis using the Morlet and Gaussian 
continuous WT. Several works have been developed in 
many areas with aim of this tool, specially, in the last ten 
years have been met the potential benefits of applying 
WT to power systems due to, among other , the interested 
in analyzing and processing the voltage-current signals in 
order to make a real time indentification of transients in  a 
fast and accurate way. High impedance fault identification 
[11-13] is other application area of wavelet transform, for 
example, [13] presents a comparative analysis for arc 
fault time location, the author demonstrates that the 
wavelet approach is strongly affected by the choice of a 
wavelet family, decomposition level, sample rate and 
arcing fault behavior. In this paper LVQ network and 
wavelet transform are used to detection of Ferroresonance 
form other transient events. LVQ network classifies input 
vector by a competitive layer for determining the sub-
classes, and then composition sub-classes in target classes 
by linear layer. In spite of Perceptron networks that able 
to classify only linear distinct vectors, LVQ network can 
classify every input vectors, only if the competitive layer 
have enough neurons. In high frequencies, wavelet 
transform has a good time resolution and a weak 
frequency resolution. on the contrary, in low frequencies, 
it has a good frequency resolution and a weak time 
resolution. This property is useful about signals with high 
frequencies in short-time domains and low frequencies in 
long-time domains. 
 
2. Ferroresonance phenomenon 
 
Ferroresonance is a term in witch for description of 
resonance in a circuit with at least one non-linear 
inductive element. A Ferroresonance circuit includes 
series combination of  saturable inductor, capacitor and 
linear resistor. The resonance in witch happens in circuits 
with saturable reactors is called Ferroresonance. In fact 
Ferroresonance is a non-linear event, so many ways used 
to analysis this event are based on time-domain analysis 
and using EMTP program. Ferroresonance has decaying 
effects on transformers and other equipments. Some of 
those effects are as follow: creating high voltages and 
currents, and disfigurement in voltage and current 
waveforms. For this reasons, the detection of 
Ferroresonance  from other transients  is very important. 
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In this paper a new algorithm is used for detection of this 
event. By this algorithm we can predict some possibilities 
in happening Ferroresonance and so we can face it with 
making some relays that shown in Fig.1. 
 
3. Obtaining the signals 
 
In order to obtain the signals, a part of a 20kV feeder has 
been selected in Qeshm island which is illustrated in Fig.1 
[14]. These signals include: Ferroresonance, capacitor 
switching, load switching, and transformer switching 
signals. The models determined to be simulated by the 
EMTP program are, p and load frequency model 
(CIGRE), for line and load respectively, saturable model 
is used for all transformers. The inductor with hystersis 
loop of  TYPE 96 was used for modeling hystersis loop in 
EMTP, which was connected to the outlet magnetizing 
branch of the transformer. The magnetization curve of 
transformers is illustrated in Fig.3. Feeder information is 
provided in the appendix. All kind of Ferroresonance that 
different parameters such as switching types, transformer 
connection type, hystersis phenomenon, line capacitance 
feature, line length and load impact which can be 
influential in the occurance of this phenomenon have been 
simulated. Fig. 4 illustrates a type of Ferroresonance 
which has been simulated by the EMTP. Different types 
of capacitor switching have been obtained through the 

switching of the two capacitor banks of the feeder in 
various forms. For example first capacitor bank was 
firstly switched, then the second one, next both at a time, 
and other forms can be achieved through the switching of 
one of the capacitor bank and then by switching a part of 
the feeder; an example is provided in Fig.5. For 
simulating different types of load switching,  we switch 
the loads in different arrangements. For example, we 
firstly switch them one at a time, then two at a time, and 
other arrangements can be achieved by switching one or 
two of the loads with a part of the feeder. Thus, different 
signals are obtained. An example of which is provided in 
Fig.6. For simulating the transformer switching signals, 
we switch the transformers in different orders. For 
example, we switch the transformers one at a time, then 
two at a time, and different types can be achieved by 
switching one or two of the transformers with a part of the 
feeder. Thus, different signals are obtained. An example 
of which is provided in Fig.7. This way, for each group of 
signals, 20 types can be obtained. Then we normalize 
(scale) them in the max-min range ( 0 to 1). This is very 
influential in the exact determination of the features and 
every pattern.  
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Fig. 1. Proposed algorithm 
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Fig. 2. 20kV Feeder 

 

 
Fig. 3.Magnetizing curve 

 

 
Fig. 4. An example of  Ferroresonance 
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Fig. 5. An example of Capacitor switching 

 

 
Fig. 6. An example of Load switching 

 

 
Fig. 7. An example of Transformer switching 

 
4. Wavelet Transform 
 
Wavelet transform (WT) was introduced by J Morlet at 
the beginning of 1985 and has attracted much interest in 
the fields of speech and image processing. Applications of 
DWT in power systems are reported for: 
 
• Power system transients [15]. 
• Power quality assessment [16]. 
• Modeling of system component in wavelet domain 
[17]. 
 

In this section an introduction to wavelet transform is 
presented. More details can be found in [18],[19]. The 
WT was developed as an alternative to the short time 
Fourier Transform (STFT) to overcome problems related 
to its frequency and time resolution properties. More 
specifically, unlike the STFT that provides uniform time 
resolution for all frequencies, the DWT provides high 
time resolution and low frequency resolution for high 
frequencies and high frequency resolution and low time 
resolution for low frequencies. The DWT is a special case 
of the WT that provides a compact representation of a 
signal in time and frequency that can be computed 
efficiently. The DWT is defined by the following 
equation: 

 
∑∑ −= −−

j k

jj knkxKjW )2(2)(),( 2/ ϕ  (1) 

 

where f(t) is a time function with finite energy and fast 
decay called the mother wavelet. The DWT analysis can 
be performed using a fast, pyramidal algorithm related to 
multi rate filter banks. As a multi rate filter bank DWT 
can be viewed as a constant Q filter bank with octave 
spacing between the centers of the filters. Each sub band 
contains half the samples of the neighboring higher 
frequency sub band. In the pyramidal algorithm the signal 
is analyzed at different frequency bands with different 
resolution by decomposing the signal into a coarse 
approximation and detail information. The coarse 
approximation is then further decomposed using the same 
wavelet decomposition step. This is achieved by 
successive high pass and low pass filtering of the time 
domain signal and is defined by the following equations: 
where y [k] high and y [k] low are the outputs of the high 
pass (g) and low pass (h) filters, respectively after sub 
sampling by 2. Down sampling the number of resulting 
wavelet coefficients becomes exactly the same as the 
number of input points. A variety of different wavelet 
families have been proposed in the literature. The choice 
of mother wavelet plays a significant role in time 
frequency analysis. It also depends on a particular 
application. In this work all wavelets available in the 
Wavelet Toolbox of MATLAB program [20] were used 
for the decomposition of the signals and the best answer 
was obtained with Daubechies mother wavelet. It was 
found to have the most correlation with the decomposed 
signals and was selected for this procedure. 
 
4.1 Applying Wavelet Transform and feature 

extraction 
 
The decomposition is done by modifying the wavelet 
transform through passing the signal via a digital  half 
band low pass filter. This digital  half band low pass filter 
excludes all the signals which are higher than the half of 
the value of the largest signal frequency. If a signal 
having nyquist rate(which is twice the largest frequency 
in the signal) was taken as a sample, the largest frequency 
present in the signal would be p radian. That is, nyquist 
frequency in the range of discreet frequency corresponds 
p (rad/s). After a signal passes through a digital  half band 
low pass filter, according to the theory of nyquist, half of 
the signals can be excluded, for now the signal has the 
maximum frequency of  p/2 (rad/s). Thus the obtained 
signal has a length half of that of the original one. This 
procedure is repeated for 6 times and the signals omitted 
by the low pass filter at each time, are considered as detail 
signals. The energies of these detail signals, are the 
features extracted from the patterns to feed into the neural 
network. In Fig.8 a Ferroresonance pattern with 6 detail 
signals and an approximation signal obtained by applying 
the Db wavelet transform up to six levels is illustrated. 
According to the definition, the energy of every discreet 
signal such as x (n) is defined as follows: ( N equals the 
length of the signal)   
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Fig. 8.Decomposition of Ferrosonance by Daubechies 

mother wavelet 
 
5. LVQ Neural Network 
 
The LVQ network architecture [21] is shown in Fig.9. 
LVQ network has a first competitive layer and a second 
linear layer. The competitive layer learns to classify input 
vectors in much the same way as the competitive layers of  

Self-Organizing and LVQ Network described in this 
chapter. The linear layer transforms the competitive 
layer's classes into target classifications defined by the 
user. We refer to the classes learned by the competitive 
layer as subclasses and the classes of the linear layer as 
target classes. Both the competitive and linear layers have 
one neuron per (sub or target) class. Thus, the competitive 
layer can learn up to S1 subclasses. These, in turn, are 
combined by the linear layer to form S2 target classes. 
(S1 is always larger than S2). In Fig.8 P is input vector 
with R elements and IW1,1  is the weights matrix of 
neurons in competitive layer . Each row in this matrix is 
the weights of one neuron. ||ndist|| block computes the 
distance of input vector P from weight vectors of each 
neuron. Thus if the number of competitive layer neurons 
were S1, then IW1,1  is S1 by R matrix. In this case the 
||ndist|| output, that determined by n1 in Figure, is an s1 
element vector that each element is the distance of input 
to one neuron. The C block is a competitive function that 
its output (a1) is a vector with one element equal 1 and 
others equal 0. the element that equals 1, determines the  
input subclass. In linear layer, the target class is 
determined. The neurons number in linear layer is equal 
to target classes number. The  LW2,1 block with elements 
equal to 1 or 0, is the neurons weight matrix in linear 
layer. This layer determines the subclasses of each target 
class. For example, suppose neurons 1, 2, and 3 in the 
competitive layer all learn subclasses of the input space 
that belongs to the linear layer target class No.2. Then 
competitive neurons 1, 2, and 3, will have LW2,1 weights 
of 1.0 to neuron n2 in the linear layer, and weights of 0 to 
all other linear neurons. Thus, the linear neuron produces 
a1 if any of the three competitive neurons (1,2, and 3) 

wins the competition and output a1. This is how the 
subclasses of the competitive layer are combined into 
target classes in the linear layer. We know ahead of time 
what fraction of the layer 1 neurons should be classified 
into the various class outputs of layer 2, so we can specify 
the elements of LW2,1 at the start. 
 
5.1 LVQ Learning Rule  
 
LVQ learning in the competitive layer is based on a set of 
input/target pairs. 
 

},{},...,,{},,{ tptptp QQ2211   (3) 

 
Each target vector has a single 1. The rest of its 

elements are 0. The 1 tells the proper classification of the 
associated input. To train the network, an input vector p is 
presented, and the distance from p to each row of the 
input weight matrix IW1,1 is computed with the function 
||ndist||. The hidden neurons of layer 1 compete. Suppose 
that the ith element of n1 is most positive, and ith neuron 
wins the competition. Then the competitive transfer 
function produces a1 as the ith element of a1. All other 
elements of a1 are 0. When a1 is multiplied by the layer 2 
weights LW2,1, the single 1 in a1 selects the class, k 
associated with the input. Thus, the network has assigned 
the input vector p to class k and a2k will be 1. Of course, 
this assignment may be a good one or a bad one, for tk 
may be 1 or 0, depending on whether the input belongs to 
class k or not. We adjust the ith row of IW1,1 in such a 
way as to move this row closer to the input vector p if the 
assignment is correct, and to move the row away from p if 
the assignment is incorrect. So if p is classified correctly: 
 

1k
2

k ta ==
 

 
we compute the new value of the ith row of IW1,1 as: 
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On the other hand, if p is classified incorrectly, 
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we compute the new value of the ith row of IW1,1 as: 
 

1))(qIWα(p(q)1)(qIW(q)IW 1,1
i

1,1
i

1,1

i −−−−=  (5) 
 

These corrections to the ith row of IW1,1 can be 
made automatically without affecting other rows of IW1,1 
by backpropagating the output errors back to layer 1. 
Such corrections move the hidden neuron towards vectors 
that fall into the class for which it forms a subclass, and 
away from vectors that fall into other classes. 
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Fig. 9. LVQ Neural Network 

 
6. Simulation Results 
 
The obtained signals were analyzed by the Daubechies 
mother wavelet and the energies of the detail signals 
obtained through the applying wavelet transform up to six 
levels have been used as the features fed into the neural 
network. For the LVQ neural network, 8 neurons are 
determined in the hidden layer, two of which are allocated 
to Ferroresonance signals and the rest to capacitor 
switching, load switching, and transformer switching 
signals. For training the network all four types of signals 
are used; 15 signals for learning and 10 for testing. Also 
the learning rate of the neural network is 0.0001 and the 
number of epochs is selected 250. The Daubechies 
wavelet transform is enforced in all the three phases of 
current and voltage signals and the competitive neural 
network. The results are provided in table1. It should be 
noted that the currents and the voltages are the primary 
currents and voltages of the feeder shown in Fig1. By 
applying the Db1 in the second phase current of the 
signals, the neural network has the least precisian of 
61.66% and by applying the Db2 in the third phase 
voltage of the signals, neural network shows the most 
precisian of 95%. The above results can be justified using 
Fig.10. This Figure compares the average of the 
components correspondent to the feature vectors extracted 
by applying Db1 and Db2 in the second phase current and 
the third phase voltage of signals, respectively.( the 
rectangles corresponding the Ferroresonance signals are 
darker.) According to the Figure, the features extracted by 
applying Db1 in the  second phase current are much 
similar. Thus the precision of algorithm is less in this 
case. But the features exacted by the applying  Db2 in the 
third phase voltage are least similar. Thus the precision of 
algorithm is more in this case. The above results can be 
justified using Fig.11,too. The instantaneous energy of 
second phase current of signals are much similar. Thus 
the precision of algorithm is less in this case and the 
instantaneous energy of third phase voltage of signals are 
less similar. Thus the precision of algorithm is more in 
this case.  

Table 1. Percentage of  NN identification 
Signal WT Percentage of NN 

identification 
First phase 

current 
Db1 75% 

First phase 
current 

Db2 80% 

First phase 
current 

Db3 75% 

Third phase 
current 

Db2 80% 

Second phase 
current 

Db1 61.66% 

Second phase 
current 

Db2 83.3% 

Second phase 
current 

Db3 83.33% 

Second phase 
voltage 

Db6 83.33% 

Third phase 
voltage 

Db4 86.65% 

Third phase 
voltage 

Db2 95% 

Third phase 
voltage 

Db3 90% 

 

 
a) Second phase current 

 
b) Third phase voltage 

 
Fig.10. comparision of the average of the components 

correspondent to the feature-vectors extracted by applying 
Db wavelet in second phase current and third phase 

current of the four groups of the signals when normalized. 
The four-membered groups from left to right are related 
to the first to sixth features. In each group, the rectangle 

respectively refers to Ferroresonance, capacitor switching, 
load switching and transformer  switching 
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a) Second phase current 

 
b) Third phase voltage 

 
Fig.11. The instantaneous energy of signals 

(F=Ferroresonance,C=CapacitorSwitching,L=Load 
switching,T=Transformer switching) 

 
7. Conclusion  
 
The presented algorithm has the highest precision on third 
phase signal of voltage and lowest precision on the third 
phase signal of current. One of the main advantages of 
this algorithm is capability of changing the number of 
extracted features by changing the number of wavelet 
transform levels. Also the chosen network has the ability 
to classifying the nonlinear feature vectors in multi-
dimension space. By increasing complexity, only  the 
number of hidden layer neurons should be increased.  The 
applied network has an acceptable precision in the 
recognition of unused patterns for learning. This fact 
highlights the practical importance of algorithm. 
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Appendix 
 

Table 2 Load data 
No. Ia(A) Ib(A) Ic(A) In(A) Capacity of 

connected 
transformers(KVA) 

1 115 78 110 90 630 
2 295 200 220 165 800 
3 40 60 55 0 500 
4 200 250 220 0 1250 
5 40 40 40 8 315 
6 20 25 25 10 250 
7 80 50 40 0 100 
8 85 40 70 40 500 
9 145 130 120 40 315 

10 205 180 205 65 500 
11 125 100 105 25 630 
12 30 60 50 20 800 
13 65 55 55 25 315 
14 155 140 105 99 630 
15 60 55 55 17 250 
16 33 57 45 32 315 
17 5 20 20 15 100 
18 60 65 75 25 500 
19 25 65 60 35 250 
20 80 85 75 28 315 
21 15 15 15 5 100 
22 175 130 145 45 315 
23 165 175 150 55 800 
24 125 150 150 45 1250 

 

 
 
 
 
 

A. The data of feeder 
 

R = 0.509 Ω/km, X = 0.3561 Ω/km 
                 Outside Radius of conductor = 0.549 cm 

 
B.Configuration of phases and mechanical data 

Height of pole = 12 m 
Sag in mid span = 2.32 m 

 
 
 
 
 
 
                                    97.5cm 
 
 
 
                                                 140cm 
 
                Fig12.Configuration of phases and mechanical data 
 

C.Constant parameters of the CIGRE load model 
usually 

considered in the EMTP program are the following: 
A = 0.073, B = 6.7, C = 0.74 

 
 
 

 
 
 
 
 
 
 
 

 
Table 3 Transformer data 

No S(KVA) Connecti
on 

N1/N2 UK% Poc(W) In1% Psc(W) 

1 3000 Yd1 63/20kv 14 22410 2.83 151247 
2 1250 Dy5 20/0.4kv 6 2100 1.4 16400 
3 1000 Dy5 20/0.4kv 6 1750 1.4 13500 
4 800 Dy5 20/0.4kv 6 1450 1.5 11000 
5 630 Dy5 20/0.4kv 6 1200 1.6 9300 
6 500 Dy5 20/0.4kv 6 1000 1.7 7800 
7 400 Dy5 20/0.4kv 6 850 1.8 6450 
8 315 Dy5 20/0.4kv 6 720 2 5400 
9 250 Dy5 20/0.4kv 6 650 2.3 4450 

10 100 Dy5 20/0.4kv 6 340 2.6 2150 
11 50 Dy5 20/0.4kv 6 210 2.8 1250 
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