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ABSTRACT
The author shows that the use of high-resolution spectrum
estimation methods instead of Fourier-based techniques
can improve the accuracy of measurement of spectral pa-
rameters of distorted waveforms encountered in power sys-
tems, in particular the estimation of the power quality in-
dices (such as inter/harmonic groups and subgroups). The
comparison of the frequency and amplitude estimation er-
ror, based on numerical simulations is presented. Presen-
tation of selected power quality indices is then followed
by comparison of estimation error in the case of applica-
tion of FFT-based algorithms and parametric methods. In-
vestigated waveforms are typical for dc arc furnace plant.
MUSIC and ESPRIT high-resolution methods are used to
analyze waveforms in a supply system of a DC arc furnace.
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1. Introduction

The quality of voltage waveforms is nowadays an issue
of the utmost importance for power utilities, electric en-
ergy consumers and also for the manufactures of electric
and electronic equipment. The proliferation of nonlinear
loads connected to power systems has triggered a grow-
ing concern with power quality issues. The inherent opera-
tion characteristics of these loads deteriorate the quality of
the delivered energy, and increase the energy losses as well
as decrease the reliability of a power system [1, 2, 3, 4].
The methods of power quality assessment in power systems
are almost exclusively based on Fourier Transform. The
crucial drawback of the Fourier Transform-based meth-
ods is that the length of the window is related to the fre-
quency resolution. Moreover, to ensure the accuracy of
Discrete Fourier Trans-form, the sampling interval of anal-
ysis should be an exact integer multiple of the waveform
fundamental period [5]. Parametric spectral methods, such
as ESPRIT or MUSIC [5] do not suffer from such inherent
limitations of resolution or dependence of estimation error
on the window length (phase dependence of the estimation
error). The resolution of these methods is to high degree in-

dependent on signal-to-noise ratio and on the initial phase
of the harmonic components. The author argues that the use
of high-resolution spectrum estimation methods instead of
Fourier-based techniques can improve the accuracy of mea-
surement of spectral parameters of distorted waveforms en-
countered in power systems, in particular the estimation of
the power quality indices [6].

The paper is composed as follows: After the de-
scription of parametric methods (ESPRIT and MUSIC),
the comparison of its performance (estimation error),
based on numerical simulation is presented. Next part
presents basics of selected power quality indices (harmonic
sub/groups), followed by comparison of estimation error in
the case of application of FFT-based algorithms and para-
metric methods.

2.    Error of estimation of parametric spectral
methods

The performance (error of estimation) of the subspace
methods has been extensively investigated in the literature,
especially in the context of the Direction-of-Arrival (DOA)
estimation. Based on [7] and [8], the derivation of variance
in the case of frequency component estimation is presented.

Comparison of mean square error is useful for theo-
retical assessment of accuracy of both methods with em-
phasis to root-MUSIC and ESPRIT. Both methods are sim-
ilar in the sense that they are both eigendecomposition-
based methods which rely on decomposition of the esti-
mated correlation matrix into two subspaces: noise and sig-
nal subspace. On the other hand, MUSIC uses the noise
subspace to estimate the signal components while ESPRIT
uses the signal subspace. In addition, the approach is in
many points different. Numerous publications were dedi-
cated to the analysis of the performance of the aforemen-
tioned methods (e.g. [7, 8, 9, 10, 11, 12, 13]). Unfortu-
nately, due to many simpliÞcations, different assumptions
and the complexity of the problem, published results often
appear to be contradictory and sometimes misleading.

When roughly summarizing different results form the
literature, a resume of basic parameters can be established,
as shown in Table 1.

To the best authors knowledge, the comparison of ac-
curacy to such extent of two different parametric methods

582-033 157

nicholas




Method CC AC RFE
Periodogram small medium medium
MUSIC high high medium
ESPRIT medium very high none

Table 1. Comparison of basic performance characteristics
of spectral methods (CC-computational cost, AC-accuracy,
RFE-risk of false estimates).

based on numerical simulation of real-like signals is for the
first time presented in this work.

3. Performance analysis of MUSIC

From the available N data samples the autocorrelation se-
quence rx[k] is computed for a chosen number of de-
lays k. The autocorrelation matrix is then formed and
then eigen-decomposed as: Rx = UΛU∗T , where U =
[u1,u2, . . . ,uk]. In one of possible approaches the poly-
nomials are built from eigenvectors spanning the noise sub-
space. The roots of each of such polynomials correspond to
signal zeros. Now the following expression can be deÞned
[8]:

D(z) =
M∑

i=K+1

[Ui(z)][U∗
i (1/z∗)] (1)

The idea of MUSIC (Multiple Signal ClassiÞcation) was
developed in [14] where the averaging was proposed for
improvement of the performance of Pisarenko estimator
[15]. Instead of using only one noise eigenvector, the MU-
SIC method uses many noise eigenÞlters. The number of
computed eigenvalues M > K +1. All eigenvalues can be
partitioned as follows:

λ1 ≥ λ2 ≥ . . . λK︸ ︷︷ ︸
K signal eigenvalues

≥ λK+1 ≥ λK+2 ≥ . . . λM︸ ︷︷ ︸
M−K noise eigenvalues

(2)

Instead of one annihilating Þlter (as in Pisarenko's es-
timator), MUSIC method uses M − K noise eigen filters.

Ui(z) =
M−1∑
m=0

ui[m]z−m; i = K + 1, . . . ,M (3)

Every eigen filter  has M − 1 roots, K roots are common
for all eigen filters. The common K roots can be found by
averaging.

3.1 Errors of estimation

The root-MUSIC algorithm uses the estimated covariance
matrix to compute the signal zeros from (1). Also from
(1) we can obtain the relation between the error of the sig-
nal zeros and the estimated D(z) [8]. When analyzing the
mean squared error (MSE) of the signal zeros estimates,

the relationship between the errors in signal zeros and the
estimated D(z) is as follows:

D(z) = c

L−1∑
l=1

(1− (zl +∆zl)z−1)(1− (zl +∆zl)∗z) (4)

When evaluating the errors of D(z) on the unit circle
(D(z)|z=ejω = D(ejω)):

D(ejωi) = c|∆zi|2
L−1∏

l=1,l �=i

|(1 − (zl + ∆zl)z−1
i |2(5)

≈ c|∆zi|2
L−1∏

l=1,l �=i

|(1 − zlz
−1
i )|2

Taking the expected value on both sides, we obtain:

E{|∆zi|2} =
E{D(ejωi)}

c
∏L−1

l=1,l �=i |(1 − zlz
−1
i )|2

= (6)

= SMUSIC
E{D(ejωi)}

L

where L is the number of samples and SMUSIC can be seen
as a sensitivity parameter of the root-MUSIC method and
is equal to [8]:

SMUSIC =
L

c
∏L−1

l=1,l �=i |(1 − zlz
−1
i )|2

= (7)

= L lim
ω→ωi

|1 − ejωie−jω|2
D(ejω)

After introduction of the derivative of V(ω):

V
′T (ω) =

1√
L

(
0, jejω, 2je2jω, ..., j(L − 1)e(j(L−1)ω)

)
(8)

and taking into account, that D(jω) =
VH(ω)PnoiseV(ω), SMUSIC becomes:

SMUSIC =
L

V′H(ωi)PnoiseV
′(ωi)

(9)

where: Pnoise = I − Psignal.
Considering, that:

D(jω) = VH(ω)(I − Psignal)V(ω) = (10)

= 1 − VH(ω)

(
M∑
l=1

eleH
l

)
V(ω)

and, that estimated êl = el + ηl, where η is the respective
estimation error , it is possible to formulate the MSE of the
roots in root-MUSIC [8], as (see (6)):

E{|∆zi|2} =
SMUSIC

L
· (L − M)σ2

noise

N
· (11)

·
(

M∑
k=1

λk

(λk − σ2
noise)2

) ∣∣VH(ωi)ek

∣∣2
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where N is the dimension of the covariance matrix and M
is the dimension of signal subspace.

In the case of single signal source with following pa-
rameters: power P1, λsignal

1 = L · P1, λ1 = λsignal
1 +

σ2
noise, and e1 = V(ω1), the sensitivity of root-MUSIC is

given by [8] (see (9)):

SMUSIC =
L

VH
1 (ω1)PnoiseV1(ω1)

=
12L

(L − 1)(L + 1)
(12)

Using (11), the expected error of estimation will be [9]:

E{|∆z1|2} =
12L

(L − 1)(L + 1)
· (13)

· λ1σ
2
noise(L − 1)

LN(LP1)2
≈ 12σ2

noise

L2P1N

The analysis of more than one sources case is analytically
very difÞcult (see [8]) and demands more arbitrary assump-
tions about the SNR and other signal parameters. Although
reported results of numerical simulations show good cor-
respondence to derived analytical expressions, their useful-
ness is quite limited.

4. Performance analysis of ESPRIT

The original ESPRIT (Estimation of Signal Parameter via
Rotational Invariance Technique) was described by Paulraj,
Roy and Kailath and later developed, for example, in [16].
It is based on a naturally existing shift invariance between
the discrete time series which leads to rotational invariance
between the corresponding signal subspaces. The shift in-
variance is illustrated below.

After the eigen-decomposition of the autocorrelation
matrix as:

Rx = U∗T ΛU (14)

it is possible to partition a matrix by using special selector
matrices which select the Þrst and the last (M−1) columns
of a (M × M) matrix, respectively:

Γ1 = [IM−1|0(M−1)×1](M−1)×M (15)
Γ2 = [0(M−1)×1|IM−1](M−1)×M

By using of matrices Γ two subspaces are deÞned, spanned
by two subsets of eigenvectors as follows:

S1 = Γ1U (16)
S2 = Γ2U

For the matrices deÞned as S1 and S2 in (16), for every
ωk; k ∈ N, representing different frequency components,
and matrix Φ, defined as:

Φ =




ejω1 0 · · · 0
0 ejω2 0 0
...

...
. . .

...
0 0 · · · ejωk


 (17)

the following relation can be proven [10]:

[Γ1U]Φ = Γ2U (18)

The matrix Φ contains all information about frequency
components. In order to extract this information, it is nec-
essary to solve (18) for Φ. By using a unitary matrix (de-
noted as T), the following equations can be derived:

Γ1(UT)Φ = Γ2(UT) (19)
Γ1U (TΦT∗T)︸ ︷︷ ︸

eig. of Φ

= Γ2U

In the further considerations the only interesting subspace
is the signal subspace, spanned by signal eigenvectors Us.
Usually it is assumed that these eigenvectors correspond
to the largest eigenvalues of the correlation matrix and
Us = [u1,u2, . . . ,uK ]. ESPRIT algorithm determines the
frequencies ejωK as the eigenvalues of the matrix Φ.

In theory, the equation (18) is satisÞed exactly. In
practice, matrices S1 and S2 are derived from an estimated
correlation matrix, so this equation does not hold exactly, it
means that (18) represents an over-determined set of linear
equations.

4.1 Errors of estimation

In the case of ESPRIT algorithm, the main source of errors
is the estimate of the matrix Φ. The equation (18) can be
solved for Φ using Least Squares or Total Least Squares ap-
proach. The choice of approach has no inßuence on asymp-
totical performance of ESPRIT as shown in [8]).

The error in the matrix Φ, denoted as ∆Φ, causes er-
rors in the eigenvalues of Φ. The error of an eigenvalue
(here denoted as ∆zi), which can be regarded as a perfor-
mance index of ESPRIT and can be approximated by:

∆zi = pi∆Φei (20)

where ei is the eigenvector of Φ corresponding to the
eigenvalue zi, whereas pi is the corresponding left eigen-
vector, so that Φei = ziei and piΦ = zipi.

From (18), the approximation of error ∆Φ can be de-
rived using:

(S1 + ∆S1)(Φ + ∆Φ) ≈ (S2 + ∆S2) (21)

as:
∆Φ ≈ S+

1 ∆S2 − S+
1 ∆S1Φ (22)

In the case of single signal source with following pa-
rameters: power P1, λsignal

1 = L · P1, U1 = V(ω1) =
1√
L

[
1, ejω1 , . . . , ej(L−1)ω1

]T , the dominant term of MSE
of ESPRIT is given by [9]:

E{|∆z1|2} ≈ 2σ2
noise

L2P1N
(23)

It can be noted that, approximately, the mean square
error of MUSIC (13) is six times higher than the MSE of
ESPRIT (23) in the case of a single signal source.
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Figure 1. MSE of frequency and power estimation (ES-
PRIT, MUSIC) depending on SNR. Averaged 1000 inde-
pendent runs.

5.    Numerical performance comparison of
MUSIC and ESPRIT

Several experiments with simulated, stochastic signals
were performed, in order to compare different performance
aspects of both parametric methods MUSIC and ESPRIT,
compared to commonly used power spectrum (FFT based
method). Testing signals are designed to belong to a class
of waveforms commonly present in power systems. Each
run of spectrum and power estimation is repeated many
times (Monte Carlo approach) and then the mean-square
error (MSE) is computed.

Parameters of test signals are as follows:

• one main 50 Hz harmonic with unit frequency and am-
plitude,

• random number of higher odd harmonic components
with random amplitudes (lower than 0.5) and random
initial phases (from 0 to 8 higher harmonics); if not
otherwise speciÞed,

• sampling frequency 5000 Hz,

• each signal generation repeated 1000-100000 times
with re-initialization of random number generator,

• SNR=20 dB if not otherwise speciÞed,

• size of the correlation matrix = 50 if not otherwise
speciÞed,

• signal length 200 samples if not otherwise speciÞed.

Selected results are presented below:
The relation to signal-to-noise ratio (Fig. 1) reveals

strong dependence of the accuracy of the frequency esti-
mation on SNR and almost no dependence of amplitude
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Figure 2. MSE of frequency and power estimation (ES-
PRIT, MUSIC) depending on the size of correlation matrix.
Averaged 1000 independent runs.
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Figure 3. MSE of frequency and power estimation (ES-
PRIT, MUSIC) and average calculation time depending on
the data window length. Averaged 10000 independent runs.

estimation (with exception to MUSIC which shows higher
errors for very low and very high noise levels).

The size of the correlation matrix must be chosen op-
timally, as can be seen from Fig. 2. In the case of both
methods, there exists an optimum of the size (relative to
the data length) which assures the lowest estimation error.
Most probably, there exists a trade-off between increasing
accuracy of the estimated correlation matrix and increasing
numerical errors with the matrix size.

The data sequence length influences  the accuracy of
MUSIC method than ESPRIT stronger (Fig. 3). For shorter
data lengths ESPRIT method is faster to calculate; this ad-
vantage vanishes with increasing number of data samples
taken into calculation.

In Fig. 4 the results are shown where the amplitude
of higher harmonics was gradually increased from 0.1 to
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Figure 4. MSE of amplitude estimation (ESPRIT, MUSIC,
power spectrum) depending on the relative amplitude of
higher harmonics amplitudes. Averaged 10000 indepen-
dent runs.

0.9 of the fundamental 50 Hz component. In such way the
problem of masking of the higher low-amplitude harmon-
ics components by a strong fundamental component was
investigated. The results show an extremely high masking
effect in the case of power spectrum, while MUSIC and
ESPRIT methods show very little dependence (almost no
dependence in the case of ESPRIT method). This is a very
important feature which partially explains excellent perfor-
mance of parametric methods in the task of calculation of
power quality indices.

6. New power quality indices

A number of power system applications require an accurate
knowledge of the spectral components of current and volt-
age waveforms. Especially, the power quality Þeld attracts
increasing interest. The main application of spectral com-
ponents in the Þeld of Power Quality refers to the calcu-
lation of waveform distortion indices. Several indices are
in common use for the characterization of waveform dis-
tortions. However, they generally refer to periodic signals
which allow an 'exact'  definition   of harmonic components
and require only a numerical value to characterize them.
The waveforms obtained from a power supply of a typical
DC arc furnace plant are analyzed. The IEC groups and
subgroups [17] are estimated by using FFT and the results
are compared with advanced methods: the ESPRIT and the
root-MUSIC methods.

6.1 Experimental setup and preprocessing

The simulated DC arc furnace plant, consists of a DC arc
furnace connected to a medium voltage ac busbar with two
parallel thyristor rectiÞers that are fed by transformer sec-
ondary windings with ∆ and Y connections, respectively.

The power supply of arc furnace is modelled using Power
System Blockset in Matlab. The electric arc was simulated
with a Chua's  circuit, which shows good similarity with
real measurements [2].

The medium voltage busbar is connected to the high
voltage busbar with a HV/MV transformer whose wind-
ings are ∆-Y connected. The power of the furnace
is 80 MW. The other parameters are: Transformer T1

- 80 MVA, 220kV/21kV; Transformer T2 - 87 MVA,
21kV/0.638kV/0.638kV.

The evaluation of harmonic and interharmonic sub-
groups has been made using the following assumptions:
window length - 200 ms non overlapping. For each win-
dow, the nth harmonic subgroup includes all spectral com-
ponents inside the frequency interval [n · f1 − 7.5, n ·
f1 + 7.5] Hz. The interharmonic subgroup includes all
the spectral components inside the frequency interval
]n·f1+7.5, (n+1)·f1−7.5[ Hz [18]. When applying para-
metric methods Þlters have been applied for pre-processing
of data. In particular: a bandstop Butterworth IIR Þlter
blocking the main (50Hz) component; a lowpass (40 Hz)
Butterworth IIR Þlter applied for analyzing interharmonics
groupings for n = 0.5 and bandpass Butterworth IIR Þlters
for other subgroups,

The amplitudes of the harmonic and interharmonic
subgroups Cn−200ms and Cn+0.5−200ms can be evaluated,
respectively, as:

C2
n−200ms =

1∑
k=−1

C2
10n+k (24)

C2
n+0.5−200ms =

8∑
k=−2

C2
10n+k (25)

where C10n+k are the spectral components (RMS
value) of the spectral (DFT) output.

According to the cited norms the relations (24) and
(25) are computed on 15 successive 200 ms windows in or-
der to obtain values of the progressive average inside a 3
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Figure 5. Progressive average of the fifth harmonic sub-
group of the voltage.
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seconds interval. Obtained results were compared to the
'Ideal IEC'   which is a value of interharmonic or subhar-
monic subgroups computed over the whole interval of 3
seconds [1] of the waveform under investigation.

Selected results of the progressive average of har-
monic subgroups calculation of the waveforms of voltage
and current are presented in Fig. 5. From the analysis of
other results it can be noted that the results obtained by
using 'Ideal IEC'  give a very high value of the progres-
sive average in the neighbourhood of the fundamental har-
monic referred to the IEC interharmonic subgroups. This
phenomenon can be explained by the problem of spectral
leakage present in the FFT based algorithms (STFT) and
therefore the high energy content leaking into the neighbor-
hood of the fundamental component of the voltage wave-
form. As shown in the Fig. 5, the high resolution methods
give results closer to the 'Ideal IEC'   than the ones obtained
with STFT for the evaluation of the progressive average.

7. Conclusion

Performed analysis and experiments allow concluding that
parametric spectral estimation methods are reliable and ac-
curate tool for the analysis of waveforms in power systems
and its properties can be used for diagnostic and power
quality applications.
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