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ABSTRACT  
Short-term load forecasting plays an important role in 
planning and operation of power system. The accuracy of 
this forecasted value is necessary for economically 
efficient operation and also for effective control. This 
paper describes a method of autoregressive Burg in 
solving one week ahead of short term load forecasting. 
The proposed method is tested based from historical load 
data of National Grid of Malaysia and load demand in 
New South Wales, Australia. The accuracy of proposed 
method, i.e., the forecast error, which is the difference 
between the forecast value and actual value of the load, is 
obtained and reported. 
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1. Introduction 
 
Prediction of future events and conditions is called 
forecasts, and the act of making such predictions is called 
forecasting. It is essential to have accurate models to 
forecast the future load demand. Load demand forecasting 
is significant for efficient network operation, network 
planning, economic scheduling of generation units and 
also maintenance activities.  
 
Load demand forecasting is typically categorized into 
long term and short term prediction. Long term forecast 
usually covers from one to ten years ahead (monthly and 
yearly values), which is used for applications in capacity 
expansion of generation and transmission. While short 
term load forecast (STLF) is normally carried out for an 
interval ranging from possibly half an hour or one hour to 
one week ahead. To supply the load demand over this 
particular duration of time involves the start up and 
shutdown of entire generating units, which will be 
determined by a number of generation control functions 
such as hydro scheduling, hydro thermal coordination, 
unit commitment and interchange evaluation [1,2]. These 
load information is obtained from the STLF system and it 
is vital to the operational of dispatch centre in order to 

dispatch load economically. It is a main goal for any 
utilities company to operate as low as possible of 
operating cost. One way to achieve this is to minimize the 
forecast error. It was estimated that an increase of 
operating cost associated with a 1% increase of forecast 
error was 10 million pounds per year [3]. 
 
The numbers of references in the literature that have been 
presented are quite large. However it is very tough to 
justify from the available references whether there is a 
model or method that can solve for all load forecast 
problem. The reason is that utility service areas vary in 
differing mixtures of industrial, commercial and 
residential customers. They also vary in geographic, 
climatologic, economic and social characteristics. 
 
A large variety of time series [4], statistical, expert system 
and artificial intelligence techniques have been developed 
to solve load forecast problem. Time series have been 
used for decades in such fields as economics, digital 
signal processing, as well as electric load forecasting. The 
advent of artificial intelligence technique increases a tool 
of solving load forecast problem. Techniques like 
artificial neural network (ANN) and fuzzy logic are the 
most common used for load forecast [5]. The most 
popular artificial neural network architecture for electric 
load forecast is back propagation [6, 7]. The approach 
technique of ANN for load forecast is also discussed in 
details in [8-10]. The technique proven reliable in 
prediction error, however very large historical data is 
needed. This is contrast with the fuzzy logic technique. 
With such generic conditioning rules, properly designed 
fuzzy logic systems can be very robust when used for 
forecasting. A simple linear prediction of fuzzy model in 
[11, 12] proves that it could provide a very satisfying 
prediction error. Other fuzzy logic techniques are 
discussed in [13-15]. Unlike ANN, fuzzy logic doesn’t 
needs large historical data in doing prediction, however 
the technique could predict for some short period of time 
only, though revised model has to justify. 
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2. Objectives and Scope 3.1 The Autoregressive Moving Average (ARMA) and 
Autoregressive (AR) Model   

 Short term load forecast (STLF) plays an important role 
in economic operation and also for the reliability of power 
systems. The main objective of the STLF is to advise 
dispatcher in making a decision for economic dispatching. 
Therefore with an accurate prediction model, it is also 
could benefit dispatch systems to:  

A time-series model that approximate many discrete-time 
stochastic processes encountered in practice is presented 
by the filter linear difference equation of complex 
coefficients 
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• supply load with stability aspect and consistence, 
• estimate fuel allocation, 
• determine operational constraints, and in which x(n) is the output sequence of a causal filter      

(h(k) = 0 for k < 0) that models the observed data and u(n) 
is an input driving white noise sequence. Eq. (1) 
determines the autoregressive-moving average (ARMA) 
model for the time series x(n). The ap(k) parameters form 
the autoregressive portion of the ARMA model. The bp(k) 
parameters form the moving average portion of the 
ARMA model. Thus, a wide sense stationary ARMA(p,q) 
process may be generated by filtering unit variance white 
noise u(n) with a causal linear shift-invariant filter having 
p poles and q zeros. 

• determine equipment limitations. 
 
The second objectives of the STLF are for security 
assessment and updating the system. STLF system 
requires offline historical data to do predictions. The data 
helps to run the model in advance, therefore allows 
dispatcher to provide any corrective counter measure to 
the system.  
 
This paper proposed a technique for STLF by using the 
approach of signal modeling to predict one week ahead of 
the future load. The proposed technique introduced a 
signal modeling by using Burg’s method [16] in solving 
load forecast for Malaysia grid system and NSW load 
demand system. The method is essentially one of the 
digital signal processing approach, where a signal 
(historical data) PS(n) is known over a given interval of 
time and the goal is to predict PL(n) over some other 
interval. The predicted value is hourly to a maximum of 
168 hours (one week ahead). In this paper AR model is 
proven that it can provide in the most of power systems 
better mean absolute percentage error (MAPE) values for 
the STLF. The Burg’s algorithm is chosen of the linear 
algorithms to produce AR model. The AR model then is 
compared with Durbin’s ARMA [17, 18] for STLF 
relative error in two power systems. One is the Malaysia 
national grid, representing tropical countries, and 
secondly the New South Wales grid, representing 
seasonal countries. 
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Therefore, a random process x(n) may be modeled as an 
ARMA(p,q) process using the model shown in Figure 1, 
where u(n) is unit variance white noise. 
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Figure 1: Modeling a random process x(n) as the response 

of a linear shift-invariant filter to unit variance white 
noise. 

 
The Burg’s method is developed of the spectrum 
estimation known as maximum entropy method [18]. As 
part of this method, which involves finding an all-pole 
model for the data, the method proposed that the 
reflection coefficients be computed sequentially by 
minimizing the mean-square of the forward and backward 
prediction error [19].  

  
3. Stochastic Models 
 
In some applications it is necessary to develop models for 
random processes. Examples includes signals whose time 
evolution is affected or driven by random or unknown 
factors, as is the case for power load forecasting. Models 
for random processes differ from those for deterministic 
signals in the characteristics of the signal that is used as 
input to the system. Whereas for deterministic signals the 
input signal is usually a unit sample, for random process 
the input signal must be a random process. Typically, this 
input will be taken to be unit variance white noise. 
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Now, we may find the value of the reflection coefficients 
fb
jΓ , that minimizes fb

jε  by setting the derivates of fb
jε  

with respect to ( fb
jΓ )* equal to zero as follows. 
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Substituting the error update equations for e  and 

 , which are similar to those given for e n  

and  in Eq. (3), and solving for 

( )f
j n

1
f
j+( )b

je n
∗



1
b
j+





( )

( )e n
∗ fb

jΓ  we find 

that the value of fb
jΓ  that minimizes fb

jε  is 

{ }
1 1

2 2

1 1

2 ( ) ( 1)

( ) ( 1)

N
f b
j j

n jfb
j N

f b
j j

n j

e n e n

e n e n

∗

− −
=

− −
=

 −
Γ = −

+ −

∑

∑

                                (5) 

From computational point of view, Burg’s method works 
as given in Table 3 
 

Table 3: The Burg Recursion 
1. Initialize the recursion 
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It is important to indicate that sequentially minimizing 

fb
pε  by Burg guarantee that the reflection coefficients are 

bounded by one in magnitude and thus, the AR model is 
stable. 
 
4. Numerical Study 
 
The comparisons of performance of the discussed ARMA 
and AR methods for short term load forecasting, data 
from the Malaysian national grid [1] as well as from New 
South Wales (NSW), Australia grid [20] is collected. In 
this study, the Malaysian grid is selected to represent 
power load variations in tropical countries, where 
temperature change over the day is the main factor in load 
fluctuation. On the other hand, the New South Wales grid 
is chosen to represent power load in seasonal countries, 
where seasonal changes of great impact on load 
variations.  
Figure 2 shows an example of hourly load curves of 
almost six month data of the Malaysian grid extends over 
a period from 1 March 2005 to14 August 2005. In the 
figure, the load behavior is relatively the same over the 
days of the year. This is mainly because of the tropical 

weather where seasonal changes are absent. On the other 
hand, Figure 3 shows the variations in power load of 
Malaysian grid over the days of the week. In the figure, 
the load behavior of weekdays (Tuesday through Friday) 
is seen mutually similar, while for the Monday load is 
somewhat similar to weekdays curve, but shows slightly 
different curves during early and morning time. Mean 
while that of Saturday and Sunday load behavior are 
significantly different. It is clear in Figure 3 that 
Saturdays load is approximately two-third of the average 
weekdays load and Sundays load is approximately half 
the average weekdays load. The reason for this pattern 
difference is that in year of 2005 in Malaysia, based on 
Government regulations, Saturdays are half day work and 
Sundays are days off; therefore, it caused the difference of 
load pattern between Saturdays and Sundays. In other 
words, the load patterns of the Malaysian grid can be 
categorized into three groups: weekdays, Saturdays, and 
Sundays. 
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Figure 2:  Historical data for the Malaysian grid from 01 

March 2005 to14 August 2005. 
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Figure 3: Hourly load curve for the Malaysian grid for 

two weeks. 
 
In the contrary to the Malaysian grid where seasonal 
effects are marginal, their significant impact on New 
South Wales (NSW) power load is shown in Figure 4. In 
the figure, power load variation in New South Wales grid 
over approximately one year data record is depicted.  
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Table 5: Record and Forecast Period 
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Grid Recorder period Forecast period 
Malaysian 07 March 2005-12 June 2005 13-19 June 2005 

 
To show the performance of the studied techniques, 
Figure 6 exhibits their accuracy in forecasting the load at 
4 pm over the seven days of the considered one week 
forecasts. 
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Figure 4:  Historical data for the NSW grid between 01 
January 2005 and 31 December 2005 

 
The hourly load curve of two weeks of NSW grid is 
depicted in Figure 5. In the figure the load behavior of 
weekdays (Monday through Friday) is relatively similar, 
while that of Saturday and Sunday are somehow different. 
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Figure 6: Load forecasts at 4 pm over the period 13-19 
June 2005 for the Malaysian grid. 

 
To show the performance of the considered parametric 
models in statistical form, MAPE based on 24 forecasted 
samples is calculated for each day and tabulated in Table 
6. 
 
Table 6: MAPE values of one week ahead forecasts of the 

Malaysian grid 

ARMA AR
Day Durbin Burg
Mon 2.33 1.21
Tue 1.67 1.17
Wed 1.29 1.06
Thu 0.96 0.59
Fri 1.52 0.88
Sat 3.21 1.22
Sun 3.67 1.31

Average 2.09 1.06

MAPE (%)

 

Figure 5: Hourly load curve for NSW grid for two weeks. 
 
In this study, we investigate the performance of the 
different parametric techniques on one week ahead 
forecast among different load types. Since, the intention is 
to test the capability of ARMA-Durbin and AR-Burg 
models in modeling power load data, no attempt has been 
initially made to reduce its degree of fluctuation by 
sorting data into different patterns; weekdays, weekends 
or even into seasonal patterns in case of NSW grid.  In 
describing the performance of the different models, the 
Mean Absolute Percentage Errors (MAPE), calculated 
from 24 forecasts over the day is used. MAPE is given as  
 Figure 6 and Table 6 show clearly the better performance 

of the different AR models to Durbin-ARMA. From 
Table 6 it is clearly that the three considered AR methods 
develop less MAPE values than Durbin’s ARMA 
especially during the Saturday, Sunday and Monday, 
where most of load variations exist. Table 6 also indicates 
that the average value of MAPE over seven days is nearly 
54% less for AR models than Durbin’s ARMA. It is 
evident that the AR-Burg performs better results than 
ARMA-Durbin. 
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where xi is the hourly data and  is the predicted value. ix̂
With the Malaysian grid the tested ARMA and AR 
models use an hourly daily data over 14 weeks (2×98 
historical data for each half an hour forecast).  Table 5 
tabulates the recorded period and the predicted period for 
the Malaysian grid.   It is worth mentioning that sorting out the data record into 

weekdays and weekends will reduce the average value of 
MAPE for the Malaysian scenario by nearly half making 
it close to 1% for AR methods and a little bit higher than 
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5. Conclusion 1.7% for Durbin’s ARMA. With NSW grid, Durbin’s 
ARMA and the AR method are tested using hourly data 
over 14 weeks (2×98 historical data for each hourly 
forecast). Table 7 tabulates the recorded period and the 
predicted period for the NSW grid. 

 
In this paper we prove the better performance of AR 
based methods to ARMA in short term power load 
forecast. The AR model Burg is tested and compared with 
Durbin’s ARMA model. Only fourteenth weeks of data 
records from both Malaysian and New South Wales grid 
are used for one-week ahead forecast. With the Malaysian 
grid the results indicate better performance by the 
considered AR model to Durbin’s ARMA by nearly 54%. 
In the contrary to ARMA, AR model managed to cope 
with the high variation in power load over Sundays and 
Mondays and show a relatively consistent MAPE values 
over the days of the week. With New South Wales grid 
where fluctuation in power load is much higher than it 
with the Malaysian grid, AR model show better MAPE 
values to Durbin’s ARMA by nearly 64%. The results 
indicate poor performance by ARMA for almost all days 
where most of load variations exist. It is important to note 
that sorting out the Saturdays and Sundays from the rest 
of the load data record improves ARMA by nearly 50% 
and AR by 40%. 

 
Table 7: Record and Forecast Period 

Grid Recorder period Forecast period 
NSW 01 January 2005 - 03 April 2005 4 - 10 April 2005 
 
Figure 7 shows the accuracy of the studied ARMA and 
AR method in forecasting the power load at 7 pm over the 
considered one week period of prediction. The 
performances of ARMA and AR method in forecasting 
the power load of NSW grid are tabulated in Table 8. It is 
apparent from Figure 7 and Table 8 that the considered 
AR model is showing better load forecast than Durbin’s 
ARMA.  From Table 8 it is evident that AR model 
develop less MAPE values than Durbin’s ARMA for 
almost all days, where at this point, Durbin’s ARMA 
reaches its worst prediction limit because of the high load 
variations. Table 8 also indicates that the average value of 
MAPE over seven days is nearly 64% less for AR model 
than Durbin’s ARMA. On the other hand and in the 
contrary to the Malaysian grid, with NSW grid there is no 
differences in the performance of the considered AR 
method. It is also worth mentioning here that, sorting data 
record of NSW scenario into seasons, weekdays, 
weekends, will reduce the average value of MAPE by 
approximately 40% for AR and 50% for ARMA. 
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