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ABSTRACT 
For static voltage stability studies of a power system, the 
loading of the system is increased incrementally and 
slowly (in certain direction) to the point of voltage 
collapse.  The MW-distance to this point is a good 
measure of system voltage stability limit. The voltage 
profile of the system is shown by the PV-curves which are 
plotted using continuation power flow programs as the 
loading varies from the base values to the point of 
collapse. Most reported studies consider constant PQ (or 
at best constant impedance, constant current, constant 
power, called ZIP) models for loads. Given, in average, 
60% of the loads include induction motors which do not 
follow the ZIP-model, the results obtained from these PV-
curves may be erroneous. In this paper, voltage stability 
analysis is performed through continuation power flow 
program that accommodates the model for the induction 
motor components of the loads. The method is tested 
using the New England 39-bus Power System. 
Comparison of the presented method with the commonly 
used method shows that the voltage stability limits found 
commonly can be too optimistic. It was found that when 
induction motor components of the loads are considered, 
the obtained voltage stability limit is smaller and the 
overall voltage profile of the system is very much 
different than that found using only PQ-load models. 
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1. Introduction 
 
Voltage stability is an important aspect of power system 
planning, operation, and control. The ability to maintain 
voltage stability for today’s stressed power systems is a 
growing concern and requires careful voltage stability 
studies. Accurate voltage stability analysis of a power 
system involves digital simulation using dynamic and 
algebraic equations that represents the comprehensive 
model of the system. However, such simulations requires 
huge amount of computer time which makes it impractical 
to be used for real time monitoring of system voltage.  

Static voltage stability analysis provides an estimate of 
the overall power system voltage stability. If properly 
used, this analysis can provide much insight into the 
voltage instability/collapse problem.  A common measure 
of static voltage stability limit (or voltage stability 
margin) is the MW-distance to the point of collapse. 
Eigenvalue analysis, singular value decomposition, 
voltage stability indices, QV and PV curves are the 
commonly used methods for static voltage stability 
studies [1:9]. Only the PV-curves, obtained by 
continuation power flow program that clearly shows the 
MW-distance to the point of collapse and the system 
voltage profile is used in this paper. 
 
Commonly, constant PQ, or ZIP (which stands for 
constant impedance, constant current, constant power) 
load models are used in continuation power flow program 
for obtaining the system PV-curves. Over 60% of the 
electric power is consumed by induction machines. The 
models for these machines are neither constant PQ nor 
ZIP. The reactive power consumption of an induction 
machine is very much related to its active power 
consumption (or equivalently its slip) [10:16].  
Consequently the results obtained from common static 
voltage stability analysis could be erroneous. 
 
The objective of this paper is to accommodate the 
induction machine components of the loads into the static 
voltage stability analysis. This is done by using an 
equivalent induction machine model, with aggregate 
parameters [17, 18], for each bus to accommodate for the 
induction motor component of the load at that bus.  
 
The proposed method is implemented in MATLAB and 
tested using the New England 39-bus power system. 
Numerical results show that the voltage stability limit and 
the voltage profile of the system found with the proposed 
method are significantly different than the ones found 
with the common method. Given the presented method 
considers load model that is closer to real physical loads, 
it can be concluded that the commonly used method for 
static voltage stability may give erroneous results. 
 The organization of this paper is as follows. Section 2 
gives a review and a different presentation for power flow 
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model including induction machines. The proposed 
method of including induction motor load component into 
voltage stability analysis process is presented in Section 
3. This method is applied to a sample power system in 
Section 4 and Section 5 concludes the paper. 
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The above equations involve four variables: active 
power P , reactive power Q , bus voltage magnitude V , 
and slip . For known values of s P and V , (3) represents 
a second order algebraic equation in terms of slip  as 
follows: 

s

 
2. Power Flow Including Induction Motors 
 
2.1 Steady State Model of Induction Motor 
     
In steady state operation, an induction motor may be 
presented by the standard equivalent circuit as shown in 
Fig. 1 [10], where / are the stator resistance / 

leakage reactance, / are the rotor resistance / 

leakage reactance referred to stator side, is the 
magnetizing reactance referred to stator side,  and is the 
rotor slip. The circuit model is given in p.u. Here, 

represents the magnitude of the voltage of the bus to 
which the induction motor is connected.  
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where a , b , and c can be derived from (3) which gives 
the following results: 
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Now, the induction motor reactive power can be 
calculated by plugging V and in (4). s
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Figure 1: Equivalent Circuit Model for Steady State 
Operation 

   
2.2 Power Flow Equations with Induction Motor 
 
Figure 2 shows a generic load bus (Bus i) of a power 
system that includes both constant PQ-load and induction 
motor load. In this figure, ( Q ) represents the 

active (reactive) power received by the motor, ( ) 
represents the active (reactive) power received by the 
constant PQ-load, and  ( Q ) represents the net active 
(reactive) power injected to the power system network at 
this bus.  

iMP ,

i

iM ,

iLP , iLQ ,

iP 
The equivalent impedance of the motor ( Z ) as seen by 
the power system at this bus is given by:  
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The complex power received by the motor is calculated 
using: 

S

*2 / ZVS =  (2) 
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After much simplification and separating the real and 
imaginary parts of , and assuming : S
  

rmrsms XXXXXXX ++=  

ms XXX +=1   

rm XXX +=2  
 Figure 2: Load Representation at a Generic Bus i 
the active and reactive power received by the motor are 
found to be: 
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From this figure, the power flow equations for Bus i are 
given as follows:  
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3. Voltage Study Including Induction 
Motors ∑
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  PV-Curve is one of the most important tools for static 
voltage stability study. These curves are based on 
continuation power flow and show how the voltage 
profile of a power system varies as the loading is 
increased from a base value to the largest possible 
maximum value (called the MW-distance to the point of 
collapse) in certain prescribed direction. The continuation 
power flow is based on steady state power flow analysis 
which is typically formulated (assuming constant PQ-
loads) as follows:      

 WhereV  (i iδ ) is the magnitude (angle) of the voltage at 

Bus i, Y  (ij ijθ ) is the magnitude (angle) of the ij-entry of 

the system Y-matrix, and N is the total number of buses. 

  
The active power  and are known values. Also, 

while is a known value, Q need be calculated 

through the power flow solution.  and are 
defined as the scheduled active and reactive power at Bus 
i which have to be satisfied through the power flow 
solution. 
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2.3 Modification of the Newton-Raphson Method 
 
Slight modifications are needed to the existing Newton-
Raphson method of power flow solution to accommodate 
loads involving induction motors. Comparing the above 
equations with those of the case with only PQ-load, we 
conclude:  

Where: 

ioP ( Q ) is the base value of the net injected active 
(reactive) power at Bus i, 

io

 

id  ( ) is the relative or proportionate increase in active     
(reactive) power at Bus i, 

id̂1) The scheduled net injected active power is now 
( ) instead of − , iLiM PP ,, −− iLP ,

2) The scheduled net injected reactive power is 
( ), iLQ ,−

λ is the changing parameter whose value is zero at base    
loading, and 
Other variables were defined previously. 3) All entries of the Jacobian Matrix related to the 

active power are unchanged, and   
The voltage stability limit is determined by finding the 
maximum (or critical) value of λ  (called cλ ) that 
satisfies the above set of equations. The voltage profile of 
the system is plotted as λ  varies between 0 (base 
loading) and cλ (maximum loading).  

4) All entries of the Jacobian Matrix related to 
reactive power are unchanged except for the 
diagonal    element /∂ which would have 

an added term of /∂ . This added term 
is calculated using (4). After simplification this 
term is given by: 

iQ∂

iMQ ,

iV
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If the load includes induction motor component, the 
above equations would have to be modified as follow: 
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             (14) The iterative Newton-Raphson solution is carried out as 

usual except that, in each iteration: (5) has to be solved 
for slip , has to be calculated from (4), and 

/  has to be calculated from (11) and then 

added to the diagonal elements / for buses that 
include induction motor loads. 
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Where  ,  , and Q  are the base values of 

 ,  , and Q respectively.  
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iMP , i
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According to these equations, the active power of the 
induction motor and the PQ-load, as well as the reactive 
power of the PQ-load are allowed to increase in any 
prescribed directions (independent of one another). 
However, the reactive power of the induction motor load 
cannot be selected arbitrarily, and has to be calculated 
from (4) which depends on the selection of the induction 
motor active power (through the slip). As shown through 
the numerical analysis in next section, this has profound 
effects on the voltage stability limit and the voltage 
profile of the system. 

 
4. Numerical Results  

 
The New England 39-Bus System is used to show the 
effects of the induction motor component of loads on 
static voltage stability limit and the PV-curves. The 
induction motor components of the loads in the original 
system are not given. These loads were assumed 100% 
constant PQ-loads by other authors for similar studies. In 
this paper, certain percentages of the loads at different 
buses were assumed to be induction motor loads. These 
percentages were chosen arbitrarily, but carefully, to 
make sure the overall percentage for the induction motor 
component of the overall load is around 60% which is 
typical of any power system.  
 
Table 1 shows the aggregate induction machine 
parameters. The last column indicates the percentage of 
the loads that are consumed by induction machines. The 
average value for the entries of this column is 60 %. Note 
that induction machines are considered only for the buses 
that have existing loads. Figures 4 and 5 show the PV-
curves for the associated load buses for the two cases of 
100% PQ-loads and combined induction motor and PQ-
loads, respectively. The PQ-loads were assumed to be 
constant power factor.  
 
The PV-curves in Figures 4 and 5 reveals that the results 
from voltage stability analysis performed assuming 100% 
PQ-loads is very optimistic both in terms of MW-distance 
to voltage collapse and the voltage profile of the system. 
With pure PQ-loads we obtain the critical loading 
parameter of cλ =1.0924 while including the induction 

motor components of the loads gives cλ =0.9363. In 
addition, the voltage profile of the system for any loading 
factor of λ  is lower when induction motor load 
components are included in the analysis. This numerical 
results should be expected due to the well known fact that 
induction motors consume a large amount of reactive 
power when the active power consumption increases 
and/or the terminal voltage decreases.  
 
5. Conclusion 
 
This paper presents a method to include the induction 
motor components of the loads for static voltage stability 

analysis by integrating the steady state model of induction 
machines into the continuation power flow program. The 
loading of the New England 39-bus System was modified 
to include induction motor component and then was used 
as the test system in this paper. Comparison of the results 
obtained using the presented method with those of the 
commonly used method reveals that the voltage stability 
limits found commonly can be too optimistic both in 
terms MW-distance to voltage collapse and the voltage 
profile of the system.   

 
Figure 3:  The New England 39-Bus System. 

 
Table 1: Aggregate Parameters of Induction Motors at 

different Buses 

Bus sR  sX  mX  rX  rR  
% of 
Load 

3 0.0123 0.0508 0.857 0.0508 0.0825 90 

4 0.0687 0.1507 2.57 0.1237 0.037 44 

7 0.064 0.091 2.23 0.071 0.059 28 

8 0.077 0.107 2.22 0.098 0.079 62 

12 0.0123 0.0508 0.857 0.0508 0.0825 62 

15 0.0172 0.1058 3.05 0.1028 0.0228 33 

16 0.077 0.107 2.22 0.098 0.079 60 

18 0.064 0.091 2.23 0.071 0.059 76 

20 0.0172 0.1058 3.05 0.1028 0.0228 79 

21 0.064 0.091 2.23 0.071 0.059 66 

23 0.035 0.094 2.8 0.163 0.048 43 

24 0.035 0.094 2.8 0.163 0.048 59 

25 0.0687 0.1507 2.57 0.1237 0.037 68 

26 0.0175 0.0703 1.05 0.0703 0.109 71 

27 0.0175 0.0703 1.05 0.0703 0.109 70 

28 0.0687 0.1507 2.57 0.1237 0.037 50 

29 0.064 0.091 2.23 0.071 0.059 57 
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